Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. M. Streets and S. R. Quake, Physical Review Letters 104, 178102 (2010).
2. J.-L. Xiao, D.-H. Lu, and C.-H. Lee, Applied Physics Letters 102, 123703 (2013).
3. S. J. Maerkl and S. R. Quake, Science 315, 233 (2007).
4. D. Mark, S. Haeberle, G. Roth, F. V. Stettenab, and R. Zengerle, Chem. Soc. Rev. 39, 1153 (2010).
5. V. Kachel, G. Benker, K. Lichtnau, G. Valet, and E. Glossner, J. Histochem. Cytochem. 27, 335 (1979).
6. D. B. Kay, J. L. Cambier, and L. L. Wheeless Jr., J. Histochem. Cytochem. 27, 329 (1979).
7. P. J. Lee, N. C. Helman, W. A. Lim, and P. J. Hung, Bio-Techniques 44, 91 (2008).
8. Y. Fu Anne, C. Spence, A. Scherer, F. Arnold, and S. R. Quake, Nat Biotechnol. 17, 1109 (1999).
9. C. D. Chin, T. Laksanasopin, Y. K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S. L. Braunstein, J. van de Wijgert, R. Sahabo, J. E. Justman, W. El-Sadr, and S. K. Sia, Nature Medicine 17, 1015 (2011).
10. J. R. Michael, W. A. Lam, and D. A. Fletcher, Lab on a Chip 8, 1062 (2008).
11. D. Wlodkowic, S. Faley, M. Zagnoni, J. P. Wikswo, and J. M. Cooper, Anal Chem 81, 5517 (2009).
12. R. Raju, M. Kavya, and P. P. Mondal, Micros. Res. Tech. 76, 11011107 (2013).
13. Q. Wei, E. McLeod, H. Qi, Z. Wan, R. Sun, and A. Ozcan, Scientific Reports 3, 1699 (2013).
14. S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, Appl. Phys. Lett. 98, 161109 (2011).
15. L. Peng, R. J. Meagher, Y. K. Light, S. Yilmaz, R. Chakraborty, A. P. Arkin, T. C. Hazen, and A. K. Singh, 11, 2673 (2011).
16. M. Xiaole, A. Ahsan Nawaz, Sz-Chin S. Lin, M. Ian Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. Jun Huang, Biomicrofluidics 6, 024113 (2012).
17. S. Y. Yang, S. K. Hsiung, Y. C. Hung, C. M. Chang, T. L. Liao, and G. B. Lee, Meas Sci Technol. 17, 2001 (2006).
18. Y. Sa, Y. Feng, K. M. Jacobs, J. Yang, R. Pan, I. Gkigkitzis, J. Q. Lu, and X. H. Hu, Cytometry A 83, 10271033 (2013).
19. E. I. galanzha, E. V. Shashkov, V. V. Tuchin, and V. P. Zharov, Cytometry A 73, 884 (2008).
20. M. Hayashi, A. Hattori, H. Kim, H. Terazono, T. Kaneko, and K. Yasuda, Int. Jl. Mol. Sci. 12, 3618 (2011).
21. B. K. Mckenna, J. G. Evans, M. C. Cheung, and D. J. Ehrlich, Nature Methods 8, 401 (2012).
22. A. H. Voie, D. H. Burns, and F. A. Spelman, J. Microsc. 170, 229 (1993).
23. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
24. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. Stelzer, Nat. Methods 7, 637 (2010).
25. H. U. Dodt, U. Leischner, A. Schierloh, N. Jhrling, C. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgnsberger, and K. Becker, Nat. Methods 4, 331 (2007).
26. T. F. Holekamp, D. Turaga, and T. E. Holy, Neuron 57, 661 (2008).
27. S. B. Purnapatra and P. P. Mondal, Appl. Phys. Lett. 103, 043701 (2013).
28. F. C. Zanacchi, Z. Lavagnino, M. P. Donnorso, A. D. Bue, L. Furia, M. Faretta, and A. Diaspro, Nat. Methods 8, 1047 (2011).
29. J. Friend and L. Yeo, Biomicrofluidics 4, 026502 (2010).
30. J. Illingworth and J. Kittler, Computer Vision, Graphics, and Image Processing 44, 87 (1998).
31. A. K. Sen and P. Bharadwaj, Jl. Fluid Engg. 134, 111401 (2012).
32. D. Schafer, E. A. Gibson, E. A. Salim, A. E. Palmer, R. Jimenez, and J. Squier, Opt. Exp. 17, 6068 (2009).

Data & Media loading...


Article metrics loading...



Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 /, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd