Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4896282
1.
1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Physical Review Letters 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
2.
2. A. Lai, K. M. K. H. Leong, and T. Itoh, IEEE Trans. Ant. Prop. 55, 868 (2007).
http://dx.doi.org/10.1109/TAP.2007.891845
3.
3. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, Physical Review E 74, 036621 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.036621
4.
4. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 38, 534 (2005).
http://dx.doi.org/10.1126/science.1108759
5.
5. M. H. Li, L. Hua Yang, B. Zhou, X. Peng Shen, Q. Cheng, and T. J. Cui, Journal of Applied Physics 110, 014909 (2011).
http://dx.doi.org/10.1063/1.3608246
6.
6. H. Tao, N. Landy, C. M. Bingham, X. Zhang, R. D. Averit, and W. J. Padilla, Optics Express 16, 7181 (2008).
http://dx.doi.org/10.1364/OE.16.007181
7.
7. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, Optics Letters 38, 1125 (2013).
http://dx.doi.org/10.1364/OL.38.001125
8.
8. T. Cao, C.-W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, Scientific Reports 4, 1 (2014).
http://dx.doi.org/10.1038/srep04463
9.
9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Physical Review Letters 100, 207402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207402
10.
10. F. Bilotti, L. Nucci, and L. Vegni, Microwave and Optical Technology Letters 48, 2171 (2006).
http://dx.doi.org/10.1002/mop.21891
11.
11. P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, Applied Physics Letters 102, 081122 (2013).
http://dx.doi.org/10.1063/1.4794173
12.
12. S. D. Campbell and R. W. Ziolkowski, IEEE Transactions on Antennas and Propagation 61, 1191 (2013).
http://dx.doi.org/10.1109/TAP.2012.2227658
13.
13. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, Microwave and Optical Technology Letters 55, 2131 (2013).
http://dx.doi.org/10.1002/mop.27786
14.
14. S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, Microwave and Optical Technology Letters 56, 350 (2014).
http://dx.doi.org/10.1002/mop.28122
15.
15. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “An ultra-thin Polarization-Independent Metamaterial Absorber for Triple Band Applications,” in IEEE Applied Electromagnetics Conference, Bhubaneswar, India, 18–20 December 2013, pp. 1.
16.
16. S. Bhattacharyya and K. V. Srivastava, Journal of Applied Physics 115, 064508 (2014).
http://dx.doi.org/10.1063/1.4865273
17.
17. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, Journal of Applied Physics 114, 094514 (2013).
http://dx.doi.org/10.1063/1.4820569
18.
18. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, Journal of Applied Physics 115, 104503 (2014).
http://dx.doi.org/10.1063/1.4868577
19.
19. Y. Pang, H. Cheng, Y. Zhou, and J. Wang, Journal of Applied Physics 113, 114902 (2013).
http://dx.doi.org/10.1063/1.4795277
20.
20. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, IEEE Transactions on Antennas and Propagation 61, 1201 (2013).
http://dx.doi.org/10.1109/TAP.2012.2227923
21.
21. F. Costa, A. Monorchio, and G. Manara, “An equivalent-circuit modeling of high impedance surfaces employing arbitrary shaped FSS,” in International Conference on Electromagnetics in Advanced Applications (ICEAA) 2009, 14–18 September, 2009, Torino, Italy, pp. 852855.
22.
22. U.S. Department of Commerce, Federal Radar Spectrum Requirements (U.S. Department of Commerce, 2000).
23.
23. J. S. Hong, Microstrip Filters for RF/Microwave Applications (Wiley, Singapore, 2011), p. 202207.
24.
24. A. Chakrabarti, Circuit Theory (Analysis and Synthesis) (Dhanpat Rai & Co., India, 2005), p. 35.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4896282
Loading
/content/aip/journal/adva/4/9/10.1063/1.4896282
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4896282
2014-09-19
2016-09-29

Abstract

This paper presents equivalent circuit modeling of an ultra-thin polarization-independent metamaterial microwave absorber consisting of three concentric closed ring resonators (CRR). The unit cell size as well as the other geometrical dimensions like radii and widths of the rings are optimized so that absorptions take place at three distinct frequencies near to the middle of the FCC defined radar spectrum eg., at 5.50 GHz, 9.52 GHz and 13.80 GHz with peak absorptivities of 94.1%, 99.6% and 99.4% respectively. The equivalent circuit model of the triple band absorber has been developed sequentially considering the single band and double band absorber models. The circuit simulation of the final model agrees well with the full-wave simulation, thus validating the modeling technique. The structure is also fabricated and experimental absorption peaks are found close to the simulated values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4896282.html;jsessionid=-NIaJ89_7PK0EnynlGyyKIo3.x-aip-live-02?itemId=/content/aip/journal/adva/4/9/10.1063/1.4896282&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4896282&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4896282'
Right1,Right2,Right3,