Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Physical Review Letters 84, 4184 (2000).
2. A. Lai, K. M. K. H. Leong, and T. Itoh, IEEE Trans. Ant. Prop. 55, 868 (2007).
3. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, Physical Review E 74, 036621 (2006).
4. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 38, 534 (2005).
5. M. H. Li, L. Hua Yang, B. Zhou, X. Peng Shen, Q. Cheng, and T. J. Cui, Journal of Applied Physics 110, 014909 (2011).
6. H. Tao, N. Landy, C. M. Bingham, X. Zhang, R. D. Averit, and W. J. Padilla, Optics Express 16, 7181 (2008).
7. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, Optics Letters 38, 1125 (2013).
8. T. Cao, C.-W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, Scientific Reports 4, 1 (2014).
9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Physical Review Letters 100, 207402 (2008).
10. F. Bilotti, L. Nucci, and L. Vegni, Microwave and Optical Technology Letters 48, 2171 (2006).
11. P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, Applied Physics Letters 102, 081122 (2013).
12. S. D. Campbell and R. W. Ziolkowski, IEEE Transactions on Antennas and Propagation 61, 1191 (2013).
13. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, Microwave and Optical Technology Letters 55, 2131 (2013).
14. S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, Microwave and Optical Technology Letters 56, 350 (2014).
15. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “An ultra-thin Polarization-Independent Metamaterial Absorber for Triple Band Applications,” in IEEE Applied Electromagnetics Conference, Bhubaneswar, India, 18–20 December 2013, pp. 1.
16. S. Bhattacharyya and K. V. Srivastava, Journal of Applied Physics 115, 064508 (2014).
17. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, Journal of Applied Physics 114, 094514 (2013).
18. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, Journal of Applied Physics 115, 104503 (2014).
19. Y. Pang, H. Cheng, Y. Zhou, and J. Wang, Journal of Applied Physics 113, 114902 (2013).
20. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, IEEE Transactions on Antennas and Propagation 61, 1201 (2013).
21. F. Costa, A. Monorchio, and G. Manara, “An equivalent-circuit modeling of high impedance surfaces employing arbitrary shaped FSS,” in International Conference on Electromagnetics in Advanced Applications (ICEAA) 2009, 14–18 September, 2009, Torino, Italy, pp. 852855.
22. U.S. Department of Commerce, Federal Radar Spectrum Requirements (U.S. Department of Commerce, 2000).
23. J. S. Hong, Microstrip Filters for RF/Microwave Applications (Wiley, Singapore, 2011), p. 202207.
24. A. Chakrabarti, Circuit Theory (Analysis and Synthesis) (Dhanpat Rai & Co., India, 2005), p. 35.

Data & Media loading...


Article metrics loading...



This paper presents equivalent circuit modeling of an ultra-thin polarization-independent metamaterial microwave absorber consisting of three concentric closed ring resonators (CRR). The unit cell size as well as the other geometrical dimensions like radii and widths of the rings are optimized so that absorptions take place at three distinct frequencies near to the middle of the FCC defined radar spectrum eg., at 5.50 GHz, 9.52 GHz and 13.80 GHz with peak absorptivities of 94.1%, 99.6% and 99.4% respectively. The equivalent circuit model of the triple band absorber has been developed sequentially considering the single band and double band absorber models. The circuit simulation of the final model agrees well with the full-wave simulation, thus validating the modeling technique. The structure is also fabricated and experimental absorption peaks are found close to the simulated values.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd