Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. G. Schmidt, Lateral Alignment of Epitaxial Quantum Dots (Springer, Berlin, 2007).
2. P. Michler, “Single Quantum Dots: Fundamentals,” Applications and New Concepts (Springer, Berlin, 2003).
3. C. Schneider, M. Strauß, T. Sünner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, Appl. Phys. Lett. 92, 183101 (2008).
4. P. Atkinson, M. B. Ward, S. B. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, Japan. J. Appl. Phys. 45, 2519 (2006).
5. F. Albert, S. Stobbe, C. Schneider, T. Heindel, S. Reitzenstein, S. Höfling, P. Lodahl, L. Worschech, and A. Forchel, Appl. Phys. Lett. 96, 151102 (2010).
6. C. Schneider, A. Huggenberger, T. Sünner, T. Heindel, M. Strauß, S. Göpfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Höfling, and A. Forchel, Nanotechnology 20, 434012 (2009).
7. C. Schneider, A. Huggenberger, M. Gschrey, P. Gold, S. Rodt, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp, Phys. Stat. Sol. A 18 (2012).
8. J. Skiba-Szymanska, A. Jamil, I. Farrer, M. B. Ward, C. A. Nicoll, D. J. P. Ellis, J. P. Griffiths, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Nanotechnology 22, 065302 (2011).
9. A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, Appl. Phys. Lett. 98, 131104 (2011).
10. S. Kiravittaya, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett. 88, 043112 (2006).
11. K. D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S. M. Ulrich, O. G. Schmidt, and P. Michler, Nano Letters 13(1), 126130 (2013).
12. D. Bimberg and M. Sondergeld, Phys. Rev. B 4, 3451 (1971).
13. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, and A. Forchel, Phys. Rev. B 65, 195315 (2002).
14. C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande, Ph. Roussignol, and J. M. Gérard, Appl. Phys. Lett. 81, 2737 (2002).
15. W. Bak, H. Noh, C. Stambaugh, Y. Arakawa, and W. Jhe, Appl. Phys. Lett. 100, 022105 (2012).
16. A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, Nat. Phys. 2, 759764 (2006).

Data & Media loading...


Article metrics loading...



In this letter we study the influence of temperature and excitation power on the emission linewidth from site-controlled InGaAs/GaAs quantum dots grown on nanoholes defined by electron beam lithography and wet chemical etching. We identify thermal electron activation as well as direct exciton loss as the dominant intensity quenching channels. Additionally, we carefully analyze the effects of optical and acoustic phonons as well as close-by defects on the emission linewidth by means of temperature and power dependent micro-photoluminescence on single quantum dots with large pitches.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd