Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4896601
1.
1. W. Sarlet and F. Cantrijn, SIAM Review 23, 467 (1981).
http://dx.doi.org/10.1137/1023098
2.
2. B. van Brunt, The Calculus of Variations (Springer-Verlag, New York, 2004).
3.
3. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, MA, 1980). Sec. 8-5.
4.
4. J. F. Cariñena and M. F. Rañada, Lett. Math. Phys. 15, 305 (1988).
http://dx.doi.org/10.1007/BF00419588
5.
5. J. F. Cariñena, J. Fernández–Núñez, and E. Martínez, Lett. Math. Phys. 23, 51 (1991).
http://dx.doi.org/10.1007/BF01811294
6.
6. J. F. Cariñena, C. López, and M. F. Rañada, J. Math. Phys. 29, 1134 (1988).
http://dx.doi.org/10.1063/1.527954
7.
7. J. F. Cariñena, J. Fernández–Núñez, and M. F. Rañada, J. Phys. A: Math. Gen. 36, 3789 (2003).
http://dx.doi.org/10.1088/0305-4470/36/13/311
8.
8. L. Faddeev and R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.1692
9.
9. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed. (Springer-Verlag, New York, 1989).
10.
10. G. F. Torres del Castillo, C. Andrade Mirón, and R. I. Bravo Rojas, Rev. Mex. Fís. E 59, 140 (2013).
11.
11. M. Lutzky, Phys. Lett. A 68, 3 (1978).
http://dx.doi.org/10.1016/0375-9601(78)90738-7
12.
12. G. H. Katzin and J. Levine, J. Math. Phys. 18, 1267 (1977).
http://dx.doi.org/10.1063/1.523401
13.
13. C. J. Eliezer and A. Gray, SIAM, J. Appl. Math. 30, 463 (1976).
http://dx.doi.org/10.1137/0130043
14.
14. K. Colegraver and S. J. Abdallam, J. Phys. A 16, 3805 (1983).
http://dx.doi.org/10.1088/0305-4470/16/16/018
15.
15. C. J. Moreira, J. Phys. A 18, 899 (1985).
http://dx.doi.org/10.1088/0305-4470/18/5/021
16.
16. J. R. Ray and M. Lutzky, Il Nuovo Cimento 70(2), 190 (1982).
http://dx.doi.org/10.1007/BF02902946
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4896601
Loading
/content/aip/journal/adva/4/9/10.1063/1.4896601
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4896601
2014-09-24
2016-09-26

Abstract

The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4896601.html;jsessionid=BopgLTZbARKXfOyzNs_A_svU.x-aip-live-02?itemId=/content/aip/journal/adva/4/9/10.1063/1.4896601&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4896601&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4896601'
Right1,Right2,Right3,