Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4905066
1.
1.S. Biesemans, S. Kubicek, and K. D. Meyer, Japanese Journal of Applied Physics 35, 1037 (1996).
http://dx.doi.org/10.1143/JJAP.35.1037
2.
2.H. Boudinov, J. P. d. Souza, and C. K. Saul, Journal of Applied Physics 86, 5909 (1999).
http://dx.doi.org/10.1063/1.371611
3.
3.C. E. Jones, D. Schafer, W. Scott, and R. J. Hager, Journal of Applied Physics 52, 5148 (1981).
http://dx.doi.org/10.1063/1.329415
4.
4.S. Scalese, S. Grasso, M. Italia, V. Privitera, J. S. Christensen, and B. G. Svensson, Journal of Applied Physics 99, 113516 (2006).
http://dx.doi.org/10.1063/1.2201443
5.
5.P. Alippi, A. La Magna, S. Scalese, and V. Privitera, Physical Review B 69, 085213 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085213
6.
6.M. A. Vouk and E. C. Lightowlers, Journal of Luminescence 15, 357384 (1977).
http://dx.doi.org/10.1016/0022-2313(77)90036-9
7.
7.G. S. Mitchard, S. A. Lyon, K. R. Elliott, and T. C. McGill, Solid State Communications 29, 425 (1979).
http://dx.doi.org/10.1016/0038-1098(79)91209-2
8.
8.U. O. Ziemelis, R. R. Parsons, and M. Voos, Solid State Communications 32, 445 (1979).
http://dx.doi.org/10.1016/0038-1098(79)91093-7
9.
9.D. H. Brown and S. R. Smith, Journal of Luminescence 21, 329 (1980).
http://dx.doi.org/10.1016/0022-2313(80)90025-3
10.
10.J. Weber, R. Sauer, and P. Wagner, Journal of Luminescence 2425, Part 1, 155 (1981).
http://dx.doi.org/10.1016/0022-2313(81)90241-6
11.
11.M. L. W. Thewalt, U. O. Ziemelis, and P. R. Parsons, Solid State Communications 39, 27 (1981).
http://dx.doi.org/10.1016/0038-1098(81)91040-1
12.
12.J. Wagner and R. Sauer, Physical Review B 27, 6568 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.6568
13.
13.S. P. Watkins, M. L. W. Thewalt, and T. Steiner, Solid State Communications 46, 447 (1983).
http://dx.doi.org/10.1016/0038-1098(83)90573-2
14.
14.S. P. Watkins, M. L. W. Thewalt, and T. Steiner, Physical Review B 29, 5727 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.5727
15.
15.S. P. Watkins and M. L. W. Thewalt, Physical Review B 34, 2598 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.2598
16.
16.K. Terashima and T. Matsuda, Japanese Journal of Applied Physics 41, 1203 (2002).
http://dx.doi.org/10.1143/JJAP.41.1203
17.
17.K. Terashima and M. Horikawa, Physica B: Condensed Matter 401402, 134 (2007).
http://dx.doi.org/10.1016/j.physb.2007.08.130
18.
18.T. Brown and P. Bradfield, Physical Review B 37, 2699 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2699
19.
19.S. E. Daly, M. O. Henry, K. Freitag, and R. Vianden, Journal of Physics: Condensed Matter 6, L643 (1994).
http://dx.doi.org/10.1088/0953-8984/6/43/002
20.
20.C. Möller and K. Lauer, physica status solidi (RRL) - Rapid Research Letters 7, 461 (2013).
http://dx.doi.org/10.1002/pssr.201307165
21.
21. Semiconductor Equipment and Materials International, SEMI MF1389-0704 (2004).
22.
22.P. Wagner, Applied Physics A 53, 2025 (1991).
http://dx.doi.org/10.1007/BF00323429
23.
23. Semiconductor Equipment and Materials International, SEMI MF1391-1107 (2012).
24.
24.P. Wagner, R. Oeder, and W. Zulehner, Applied Physics A 46, 7376 (1988).
http://dx.doi.org/10.1007/BF00615911
25.
25.J. F. Ziegler, M. Ziegler, and J. Biersack, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 1818 (2010).
http://dx.doi.org/10.1016/j.nimb.2010.02.091
26.
26.H. Cerva and G. Hobler, Journal of The Electrochemical Society 139, 3631 (1992).
http://dx.doi.org/10.1149/1.2069134
27.
27.L. Pelaz, L. A. Marqus, and J. Barbolla, Journal of Applied Physics 96, 5947 (2004).
http://dx.doi.org/10.1063/1.1808484
28.
28.M. D. Giles, Journal of the Electrochemical Society 138, 1160 (1991).
http://dx.doi.org/10.1149/1.2085734
29.
29.G. Z. Pan, K. N. Tu, and A. Prussin, Journal of Applied Physics 81, 78 (1997).
http://dx.doi.org/10.1063/1.364099
30.
30.H. Fischer and W. Pschunder, Proceedings of the tenth IEEE Photovoltaic Specialists Conference (1973), p. 404.
31.
31.K. Bothe and J. Schmidt, J. Appl. Phys. 99, 013701 (2006).
http://dx.doi.org/10.1063/1.2140584
32.
32.A. Mattoni, F. Bernardini, and L. Colombo, Physical Review B 66 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.195214
33.
33.A. R. Bean, S. R. Morrison, R. C. Newman, and R. S. Smith, Journal of Physics C: Solid State Physics 5, 379 (1972).
http://dx.doi.org/10.1088/0022-3719/5/4/005
34.
34.P. Pichler, Intrinsic point defects, impurities, and their diffusion in silicon (Springer, 2004).
35.
35.D. A. Antoniadis, Journal of Applied Physics 53, 9214 (1982).
http://dx.doi.org/10.1063/1.330394
36.
36.S. Solmi, A. Parisini, M. Bersani, D. Giubertoni, V. Soncini, G. Carnevale, A. Benvenuti, and A. Marmiroli, Journal of Applied Physics 92, 1361 (2002).
http://dx.doi.org/10.1063/1.1492861
37.
37.C. F. Tan, E. F. Chor, J. Liu, H. Lee, E. Quek, and L. Chan, Applied Physics Letters 83, 4169 (2003).
http://dx.doi.org/10.1063/1.1628814
38.
38.M. Uematsu, Journal of Applied Physics 111, 073517 (2012).
http://dx.doi.org/10.1063/1.3702440
39.
39.S. Mirabella, D. De Salvador, E. Napolitani, E. Bruno, and F. Priolo, Journal of Applied Physics 113, 031101 (2013).
http://dx.doi.org/10.1063/1.4763353
40.
40.S. Wilking, A. Herguth, and G. Hahn, Journal of Applied Physics 113, 194503 (2013).
http://dx.doi.org/10.1063/1.4804310
41.
41.M. Hakala, M. J. Puska, and R. M. Nieminen, Physical Review B 61, 8155 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.8155
42.
42.R. Sauer and J. Weber, Physica B+C 116, 195 (1983).
http://dx.doi.org/10.1016/0378-4363(83)90248-6
43.
43.R. D. Harris, J. L. Newton, and G. D. Watkins, Physical Review B 36, 1094 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.1094
44.
44.S. Rein and S. W. Glunz, Applied Physics Letters 82, 1054 (2003).
http://dx.doi.org/10.1063/1.1544431
45.
45.T. Mchedlidze and J. Weber, physica status solidi (RRL) Rapid Research Letters (2014).
http://dx.doi.org/10.1002/pssr.201409474
46.
46.R. L. Crabb, Proceedings of the 9th IEEE Photovoltaic Specialists Conference 329 (1972).
47.
47.K. Graff and H. Pieper, Phys. Stat. Sol. (a) 30, 593 (1975).
http://dx.doi.org/10.1002/pssa.2210300220
48.
48.G. D. Watkins, Physical Review B 12, 5824 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.5824
49.
49. Stage two of the annihilation process of the fast component within their publication is in fact the annihilation process of the slow component., K. Bothe private communication.
50.
50.E. Tarnow, EPL (Europhysics Letters) 16, 449 (1991).
http://dx.doi.org/10.1209/0295-5075/16/5/007
51.
51.J. Weber, private communication.
52.
52.K. Terashima, private communication.
53.
53.L. I. Fedina and A. L. Aseev, Sov. Phys. Solid State 32, 33 (1990).
54.
54.J. Vanhellemont, A. Romano-Rodriguez, L. Fedina, J. Van Landuyt, and A. Aseev, Materials Science and Technology 11, 1194 (1995).
http://dx.doi.org/10.1179/mst.1995.11.11.1194
55.
55.M. L. W. Thewalt, U. O. Ziemelis, and R. R. Parsons, Physical Review B 24, 3655 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.3655
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4905066
Loading
/content/aip/journal/adva/5/1/10.1063/1.4905066
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4905066
2015-01-07
2016-12-02

Abstract

Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN:H/SiO stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by -Si, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In-Si in neutral charge state and configuration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4905066.html;jsessionid=T7u5JDBx_gG5orzLPandtXga.x-aip-live-02?itemId=/content/aip/journal/adva/5/1/10.1063/1.4905066&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4905066&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4905066'
Right1,Right2,Right3,