Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4905698
1.
1.M. Hudson, Environmental Politics 15(4), 677-679 (2006).
2.
2.S. Ozturk, A. Sozdemir, and O. Ulger, International Journal of Energy Economics and Policy 3(S), 74-79 (2013).
3.
3.F. Dincer, Renewable and sustainable energy reviews 15(9), 5135-5142 (2011).
http://dx.doi.org/10.1016/j.rser.2011.07.042
4.
4.G. Li, R. Zhu, and Y. Yang, Nature Photonics 6(3), 153-161 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
5.
5.M. H. Xu and B. L. Wang, Advanced Materials Research 415, 1114-1120 (2012).
6.
6.M. I. Friswell and S. Adhikari, Journal of Applied Physics 108(1), 014901 (2010).
http://dx.doi.org/10.1063/1.3457330
7.
7.N. E. Dutoit, B. L. Wardle, and S.-G. Kim, Integrated Ferroelectrics 71(1), 121-160 (2005).
http://dx.doi.org/10.1080/10584580590964574
8.
8.A. Erturk and D. J. Inman, Smart Materials and Structures 18(2), 025009 (2009).
http://dx.doi.org/10.1088/0964-1726/18/2/025009
9.
9.S. Priya, Journal of Electroceramics 19(1), 167-184 (2007).
http://dx.doi.org/10.1007/s10832-007-9043-4
10.
10.S. Roundy and P. K. Wright, Smart Materials and structures 13(5), 1131 (2004).
http://dx.doi.org/10.1088/0964-1726/13/5/018
11.
11.H. A. Sodano, D. J. Inman, and G. Park, Shock and Vibration Digest 36(3), 197-206 (2004).
http://dx.doi.org/10.1177/0583102404043275
12.
12.M.-P. Lu, J. Song, M.-Y. Lu, M.-T. Chen, Y. Gao, L.-J. Chen, and Z. L. Wang, Nano letters 9(3), 1223-1227 (2009).
http://dx.doi.org/10.1021/nl900115y
13.
13.Z. L. Wang and J. Song, Science 312(5771), 242-246 (2006).
http://dx.doi.org/10.1126/science.1124005
14.
14.S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Nature nanotechnology 5(5), 366-373 (2010).
http://dx.doi.org/10.1038/nnano.2010.46
15.
15.L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, and F. Ma, Nano letters 13(1), 91-94 (2012).
http://dx.doi.org/10.1021/nl303539c
16.
16.Y. Hu, L. Lin, Y. Zhang, and Z. L. Wang, Advanced Materials 24(1), 110-114 (2012).
http://dx.doi.org/10.1002/adma.201103727
17.
17.K. Y. Lee, D. Kim, J. H. Lee, T. Y. Kim, M. K. Gupta, and S. W. Kim, Advanced Functional Materials 24(1), 37-43 (2014).
http://dx.doi.org/10.1002/adfm.201301379
18.
18.S.-H. Shin, Y.-H. Kim, M. H. Lee, J.-Y. Jung, and J. Nah, ACS nano 8(3), 2766-2773 (2014).
http://dx.doi.org/10.1021/nn406481k
19.
19.N. Soin, T. H. Shah, S. C. Anand, J. Geng, W. Pornwannachai, P. Mandal, D. Reid, S. Sharma, R. L. Hadimani, and D. V. Bayramol, Energy & Environmental Science 7(5), 1670-1679 (2014).
http://dx.doi.org/10.1039/c3ee43987a
20.
20.L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, and Z. L. Wang, Nano letters 13(6), 2916-2923 (2013).
http://dx.doi.org/10.1021/nl4013002
21.
21.S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, Nano letters 13(5), 2226-2233 (2013).
http://dx.doi.org/10.1021/nl400738p
22.
22.Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong, Z.-H. Lin, Y. Su, P. Bai, X. Wen, and Z. L. Wang, ACS nano 7(10), 9461-9468 (2013).
http://dx.doi.org/10.1021/nn4043157
23.
23.M. Han, X.-S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun, W. Wang, and H. Zhang, ACS nano 7(10), 8554-8560 (2013).
http://dx.doi.org/10.1021/nn404023v
24.
24.Y.-R. Chiou, S.-Y. Huang, and K. Wang, “Micro Electro Mechanical Systems (MEMS),” 2010 IEEE 23rd International Conference on (2010) pp. 59-62.
25.
25.H.-C. Jau, K.-T. Cheng, T.-H. Lin, Y.-S. Lo, J.-Y. Chen, C.-W. Hsu, and A. Y.-G. Fuh, Applied optics 50(2), 213-217 (2011).
http://dx.doi.org/10.1364/AO.50.000213
26.
26.S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nature materials 9(10), 859-864 (2010).
http://dx.doi.org/10.1038/nmat2834
27.
27.B. C. Tee, C. Wang, R. Allen, and Z. Bao, Nature nanotechnology 7(12), 825-832 (2012).
http://dx.doi.org/10.1038/nnano.2012.192
28.
28.Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, and Z. L. Wang, The Journal of Physical Chemistry Letters 3(23), 3599-3604 (2012).
http://dx.doi.org/10.1021/jz301805f
29.
29.C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, Nano letters 10(2), 726-731 (2010).
http://dx.doi.org/10.1021/nl9040719
30.
30.S. Xu, Y.-w. Yeh, G. Poirier, M. C. McAlpine, R. A. Register, and N. Yao, Nano letters 13(6), 2393-2398 (2013).
http://dx.doi.org/10.1021/nl400169t
31.
31.W. Wu, S. Bai, M. Yuan, Y. Qin, Z. L. Wang, and T. Jing, ACS nano 6(7), 6231-6235 (2012).
http://dx.doi.org/10.1021/nn3016585
32.
32.K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, and Z. L. Wang, Advanced Materials 24(22), 2999-3004 (2012).
http://dx.doi.org/10.1002/adma.201200105
33.
33.H. Sun, H. Tian, Y. Yang, D. Xie, Y.-C. Zhang, X. Liu, S. Ma, H.-M. Zhao, and T.-L. Ren, Nanoscale 5(13), 6117-6123 (2013).
http://dx.doi.org/10.1039/c3nr00866e
34.
34.M. Davis, M. Budimir, D. Damjanovic, and N. Setter, Journal of Applied Physics 101(5), 054112 (2007).
http://dx.doi.org/10.1063/1.2653925
35.
35.M. Kandpal, C. Sharan, P. Poddar, K. Prashanthi, P. R. Apte, and V. Ramgopal Rao, Applied Physics Letters 101(10), 104102-104102-104105 (2012).
http://dx.doi.org/10.1063/1.4748575
36.
36.F. Xu, F. Chu, and S. Trolier-McKinstry, Journal of applied physics 86(1), 588-594 (1999).
http://dx.doi.org/10.1063/1.370771
37.
37.J. Fang, X. Wang, Z. Tian, C. Zhong, L. Li, and R. Zuo, Journal of the American Ceramic Society 93(11), 3552-3555 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.04085.x
38.
38.See supplementary material at http://dx.doi.org/10.1063/1.4905698 for the testing results.[Supplementary Material]
39.
39.H. L. W. Chan and J. Unsworth, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 36(4), 434-441 (1989).
http://dx.doi.org/10.1109/58.31780
40.
40.J. H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.-J. Chou, and Z. L. Wang, ACS nano 5(12), 10041-10046 (2011).
http://dx.doi.org/10.1021/nn2039033
41.
41.C. K. Jeong, K. I. Park, J. Ryu, G. T. Hwang, and K. J. Lee, Advanced Functional Materials (2014).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4905698
Loading
/content/aip/journal/adva/5/1/10.1063/1.4905698
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4905698
2015-01-07
2016-09-26

Abstract

We explore a type piezoelectric material 0.9525(KNaNbO)-0.0475LiTaO (KNN-LTS) which can be used to fabricate nanogenerator with high output voltage and current due to its high piezoelectric constant ( ). Because of its unique structure mixed with multi-wall carbon nanotube and polydimethylsiloxane, the output voltage is up to 53 V and the output current is up to 15 uA (current density of 12.5 uA/cm2) respectively. The value of the output voltage and output current represent the highest level in the piezoelectric field reported to date. The KNN-LTS nanopowder-based nanogenerator can also be used as a sensitive motion detection sensor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4905698.html;jsessionid=qOha9WxgPSKhlH5HhvUb71X0.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4905698&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4905698&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4905698'
Right1,Right2,Right3,