Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4905701
1.
1.C. Kharif and E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon,” Eur. J. Mech. B (Fluids) 22, 603634 (2003).
http://dx.doi.org/10.1016/j.euromechflu.2003.09.002
2.
2.C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009).
3.
3.D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 10541057 (2007).
http://dx.doi.org/10.1038/nature06402
4.
4.B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nature. Physics 6, 790795 (2010).
http://dx.doi.org/10.1038/nphys1740
5.
5.M. S. Ruderman, “Freak waves in laboratory and space plasmas,” Eur. Phys. J. Spec. Top 185, 5766 (2010).
http://dx.doi.org/10.1140/epjst/e2010-01238-7
6.
6.W. M. Moslem, P. K. Shukla, and B. Eliasson, “Surface plasma rogue waves,” Euro. Phys. Lett. 96, 25002 (5pp) (2011).
http://dx.doi.org/10.1209/0295-5075/96/25002
7.
7.P. K. Shukla and W. M. Moslem, “Alfvénic rogue waves,” Phys. Lett. A 376, 11251128 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.02.018
8.
8.Yu. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80, 033610 (5pp) (2009).
http://dx.doi.org/10.1103/PhysRevA.80.033610
9.
9.A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue Wave Observation in a Water Wave Tank,” Phys. Rev. Lett. 106, 204502 (4pp) (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.204502
10.
10.A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Observation of rogue wave holes in a water wave tank,” J. Geophys. Res. 117, C00J02 (5pp) (2012).
11.
11.A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, “Super RogueWaves: Observation of a Higher-Order Breather inWaterWaves,” Phy. Rev. X 2, 011015 (6pp) (2012).
12.
12.D. H. Peregrine, “Water waves, Nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. Ser. B, Appl. Math. 25, 1643 (1983).
http://dx.doi.org/10.1017/S0334270000003891
13.
13.B. Dysthe Kristian and K. Trulsen, “Note on Breather Type Solutions of the NLS as Models for Freak-Waves,” Phys Scri. T 82, 4852 (1999).
14.
14.V. I. Shrira and V. V. Geogjaev, “What makes the Peregrine soliton so special as a prototype of freak waves?,” J. Eng. Math. 67, 1122 (2010).
http://dx.doi.org/10.1007/s10665-009-9347-2
15.
15.V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid,” J. Appl. Mech. and Tech. Phys. 9, 190194 (1968).
http://dx.doi.org/10.1007/BF00913182
16.
16.V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: the beginning,” Phys. D 238, 540 (8pp) (2009).
http://dx.doi.org/10.1016/j.physd.2008.12.002
17.
17.N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the Nonlinear Schrödinger equation,” Theor. Math. Phys. 69, 10891093 (1986).
http://dx.doi.org/10.1007/BF01037866
18.
18.M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J. M. Dudley, and G. Genty, “Higher-Order Modulation Instability in Nonlinear Fiber Optics,” Phys. Rev. Lett. 107, 253901 (5pp) (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.253901
19.
19.P. Dubard and V. B. Matveev, “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation,” Nat. Hazards. Earth. Syst. Sci. 11, 667672 (2011).
http://dx.doi.org/10.5194/nhess-11-667-2011
20.
20.P. Gaillard, “Families of quasi-rational solutions of the NLS equation and multi-rogue waves,” J. Phys. A: Math. Theor. 44, 435204 (15pp) (2011).
http://dx.doi.org/10.1088/1751-8113/44/43/435204
21.
21.A. Ankiewicz, J. D. Kedziora, and N. Akhmediev, “Rogue wave triplets,” Phys. Lett. A 375, 27822785 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.05.047
22.
22.Y. Ohta and J. K. Yang, “General high-order rogue waves and their dynamics in the nonlinear Schröedinger equation,” Proc. R. Soc. A 468, 17161740 (2012).
http://dx.doi.org/10.1098/rspa.2011.0640
23.
23.D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, “Circular rogue wave clusters,” Phys. Rev. E 84, 056611 (7pp) (2011).
http://dx.doi.org/10.1103/PhysRevE.84.056611
24.
24.B. L. Guo, L. M. Ling, and Q. P. Liu, “Nonlinear Schrödinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions,” Phys. Rev. E 85, 026607 (9pp) (2012).
http://dx.doi.org/10.1103/PhysRevE.85.026607
25.
25.P. Gaillard, “Degenerate determinant representation of solutions of the nonlinear Schrödinger equation, higher order Peregrine breathers and multi-rogue waves,” J. Math. Phys 54, 013504 (32pp) (2013).
http://dx.doi.org/10.1063/1.4773096
26.
26.J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E 87, 052914 (10pp) (2013).
http://dx.doi.org/10.1103/PhysRevE.87.052914
27.
27.V. B. Matveev and M. A. Salle, Darboux Transfromations and Solitons (Springer-Verlag, Berlin, 1991).
28.
28.J. S. He, L. Zhang, Y. Cheng, and Y. S. Li, “Determinant representation of Darboux transformation for the AKNS system,” Science in China Series A: Mathematics 49, 18671878 (2006).
http://dx.doi.org/10.1007/s11425-006-2025-1
29.
29.K. Imai, “Generlization of Kaup-Newell Inverse Scattering Formulation and Darboux Transformation,” J. Phys. Soc. Japan 68, 355359 (1999).
http://dx.doi.org/10.1143/JPSJ.68.355
30.
30.H. Steudel, “The hierarchy of multi-soliton solutions of the Derivative Nonlinear Schrödinger Equation,” J. Phys. A: Math. Gen. 36, 19311946 (2003).
http://dx.doi.org/10.1088/0305-4470/36/7/309
31.
31.S. W. Xu, J. S. He, and L. H. Wang, “The Darboux transformation of the derivative nonlinear Schrodinger equation,” J. Phys. A: Math. Theor. 44, 305203 (22pp) (2011).
http://dx.doi.org/10.1088/1751-8113/44/30/305203
32.
32.S. W. Xu and J. S. He, “The rogue wave and breather solution of the Gerdjikov-Ivanov equation,” J. Math. Phys. 53, 063507 (17pp) (2012).
http://dx.doi.org/10.1063/1.4726510
33.
33.L. J. Guo, Y. S. Zhang, S. W. Xu, Z. W. Wu, and J. S. He, “The higher order rogue wave solutions of the Gerdjikov-Ivanov equation,” Phys. Scr. 89, 035501 (11pp) (2014).
http://dx.doi.org/10.1088/0031-8949/89/03/035501
34.
34.K. Mio, T. Ogino, K. Minami, and S. Takeda, “Modified Nonlinear Schrödinger Equation for Alfvén Waves Propagating along the Magnetic Field in Cold Plasmas,” J. Phys. Soc. Jpn. 41, 265271 (1976).
http://dx.doi.org/10.1143/JPSJ.41.265
35.
35.A. A. Zabolotskii, “Self-induced transparency and quadratic stark effect,” Phys. Lett. A 124, 500502 (1987).
http://dx.doi.org/10.1016/0375-9601(87)90052-1
36.
36.M. Wadati, K. Konno, and Y. H. Ichikawa, “A Generalization of Inverse Scattering Method,” J. Phys. Soc. Jpn. 46, 19651966 (1979).
http://dx.doi.org/10.1143/JPSJ.46.1965
37.
37.A. Kundu, “Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations,” J. Math. Phys. 25, 34333438 (1984).
http://dx.doi.org/10.1063/1.526113
38.
38.K. Porsezian, P. Seenuvasakumaran, and K. Saravanan, “Next hierarchy of mixed derivative nonlinear Schrödinge equation,” Chaos, Solitons and Fractals 11, 22232231 (2000).
http://dx.doi.org/10.1016/S0960-0779(99)00142-3
39.
39.Q. Ding and Z. N. Zhu, “On the gauge equivalent structure of the modified nonlinear Schrödinger equation,” Phys. Lett. A 295, 192197 (2002).
http://dx.doi.org/10.1016/S0375-9601(02)00149-4
40.
40.A. Kundu, “Integrable Hierarchy of Higher Nonlinear Schrödinger Type Equations,” Symmetry, Integrability and Geometry: Methods and Applications 2, 078 (12pp) (2006).
41.
41.T. Kawata, J. I. Sakai, and N. Kobayashi, “Inverse Method for the Mixed Nonlinear Schrödinger Equation and Soliton Solutions,” J. Phys. Soc. Jpn. 48, 13711379 (1980).
http://dx.doi.org/10.1143/JPSJ.48.1371
42.
42.A. R. Chowdhury, S. Paul, and S. Sen, “Periodic solutions of the mixed nonlinear Schrodinger equation,” Phys. Rev. D 32, 32333237 (1985).
http://dx.doi.org/10.1103/PhysRevD.32.3233
43.
43.D. Mihalache, N. Truta, N. C. Panoiu, and D. M. Baboiu, “Analytic method for solving the modified nonlinear schrödinger equation describing solition propagation along optical fibers,” Phys. Rev. A 47, 31903194 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.3190
44.
44.E. V. Doktorov, “The modified nonlinear Schrödinger equation: facts and artefacts,” Eur. Phys. J. B 29, 227231 (2002).
http://dx.doi.org/10.1140/epjb/e2002-00291-9
45.
45.A. A. Rangwala and J. A. Rao, “Backlund transformations, soliton solutions and wave functions of Kaup-Newell and Wadati-Konno-Ichikawa systems,” J. Math. Phys. 31, 11261132 (1990).
http://dx.doi.org/10.1063/1.528794
46.
46.O. C. Wrigh, “Homoclinic connections of unstable plane waves of the modified nonlinear Schrödinger equation,” Chaos, Solitons and Fractals 20, 735749 (2004).
http://dx.doi.org/10.1016/S0960-0779(03)00446-6
47.
47.T. C. Xia, X. H. Chen, and D. Y. Chen, “Darboux transformation and soliton-like solutions of nonlinear Schrödinger equations,” Chaos, Solitons and Fractals 26, 889896 (2005).
http://dx.doi.org/10.1016/j.chaos.2005.01.030
48.
48.H. Q. Zhang, B. G. Zhai, and X. L. Wang, “Soliton and breather solutions of the modified nonlinear Schrödinger equation,” Phys. Scr. 85, 015007 (8pp) (2012).
http://dx.doi.org/10.1088/0031-8949/85/01/015007
49.
49.S. L. Liu and W. Z. Wang, “Exact N-soliton solution of the modified nonlinear Schrödinger equation,” Phys. Rev. E 48, 30543059 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.3054
50.
50.M. Li, B. Tian, W. J. Liu, H. Q. Zhang, and P. Wang, “Dark and antidark solitons in the modified nonlinear Schrödinger equation accounting for the self-steepening effect,” Phys. Rev. E 81, 046606 (8pp) (2010).
http://dx.doi.org/10.1103/PhysRevE.81.046606
51.
51.A. V. Kitaevy and A. H. Vartanianz, “Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: solitonless sector,” Inverse. Problems 13, 13111339 (1997).
http://dx.doi.org/10.1088/0266-5611/13/5/014
52.
52.A. H. Vartaniana, “Higher order asymptotics of the modified non-linear schrödinger equation,” Comm. PDE 25, 10431098 (2000).
http://dx.doi.org/10.1080/03605300008821541
53.
53.X. J. Chen and J. K. Yang, “Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation,” Phys. Rev. E 65, 066608 (12pp) (2002).
http://dx.doi.org/10.1103/PhysRevE.65.066608
54.
54.V. S. Shchesnovich and E. V. Doktorov, “Perturbation theory for the modified nonlinear Schrödinger solitons,” Physica. D 129, 115129 (1999).
http://dx.doi.org/10.1016/S0167-2789(98)00209-7
55.
55.V. M. Lashkin, “Soliton of modified nonlinear Schrödinger equation with random perturbations,” Phys. Rev. E 69, 016611 (11pp) (2004).
http://dx.doi.org/10.1103/PhysRevE.69.016611
56.
56.J. C. DiFranco and P. D. Miller, “The semiclassical modified nonlinear Schrödinger equation I: Modulation theory and spectral analysis,” Physica D 237, 947997 (2008).
http://dx.doi.org/10.1016/j.physd.2007.11.022
57.
57.J. C. DiFranco, P. D. Miller, and B. K. Muite, “On the modified nonlinear Schrodinger equation in the semicalassical limit: supersonic,subsonic, and transsonic behavior,” Acta Mathematica Scientia 31B, 23432377 (2011).
http://dx.doi.org/10.1016/S0252-9602(11)60405-0
58.
58.J. C. DiFranco and P. D. Miller, The semiclassical modified nonlinear Schrödinger equation II: Asymptotic analysis of the Cauchy probblem. The elliptic region for transsionic initial data, aXiv:arXiv:1208.1541v1 (2012).
59.
59.J. Lenells, “The derivative nonlinear Schrödinger equation on the half-line,” Physica D 237, 30083019 (2008).
http://dx.doi.org/10.1016/j.physd.2008.07.005
60.
60.B. L. Guo, L. L. Ling, and Q. P. Liu, “High-order solutions and generalized Darboux transformations of derivative nonlinear Schrodinger equations,” Stud. Appl. Math. 130, 317344 (2013).
http://dx.doi.org/10.1111/j.1467-9590.2012.00568.x
61.
61.Y. S. Zhang, L. J. Guo, S. W. Xu, Z. W. Wu, and J. S. He, “The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation,” Commun. Nonlinear Sci. Numer. Simulat. 19, 17061722 (2014).
http://dx.doi.org/10.1016/j.cnsns.2013.10.005
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4905701
Loading
/content/aip/journal/adva/5/1/10.1063/1.4905701
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4905701
2015-01-07
2016-12-11

Abstract

The mixed nonlinear Schrödinger (MNLS) equation is a model for the propagation of the Alfvén wave in plasmas and the ultrashort light pulse in optical fibers with two nonlinear effects of self-steepening and self phase-modulation(SPM), which is also the first non-trivial flow of the integrable Wadati-Konno-Ichikawa(WKI) system. The determinant representation of a n-fold Darboux transformation(DT) for the MNLS equation is presented. The smoothness of the solution [2] generated by is proved for the two cases (non-degeneration and double-degeneration ) through the iteration and determinant representation. Starting from a periodic seed(plane wave), rational solutions with two parameters and of the MNLS equation are constructed by the DT and the Taylor expansion. Two parameters denote the contributions of two nonlinear effects in solutions. We show an unusual result: for a given value of , the increasing value of can damage gradually the localization of the rational solution, by analytical forms and figures. A novel two-peak rational solution with variable height and a non-vanishing boundary is also obtained.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4905701.html;jsessionid=vhC5z7zeYfgJvFoT7UYI4CFi.x-aip-live-02?itemId=/content/aip/journal/adva/5/1/10.1063/1.4905701&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4905701&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4905701'
Right1,Right2,Right3,