Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. A. Cooper, Jr., Phys. Stat. Sol. (a) 162, 305 (1997).;2-7
2.H. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman, Appl. Phys. Lett. 70, 2028 (1997).
3.G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, IEEE Electron Device Lett. 22, 176 (2001).
4.H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. 112, 024520 (2012).
5.Y. Nanen, M. Kato, J. Suda, and T. Kimoto, IEEE Trans. Electron Devices 60, 1260 (2013).
6.K. Fukuda, M. Kato, K. Kojima, and J. Senzaki, Appl. Phys. Lett. 84, 2088 (2004).
7.M. Okamoto, Y. Makifuchi, M. Iijima, Y. Sakai, N. Iwamuro, H. Kimura, K. Fukuda, and H. Okumura, Appl. Phys. Express 5, 041302 (2012).
8.H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara, IEEE Electron Device Lett. 20, 611 (1999).
9.J. Senzaki, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki, and K. Fukuda, IEEE Electron Device Lett. 23, 13 (2002).
10.T. Endo, E. Okuno, T. Sakakibara, and S. Onda, Mater. Sci. Forum 600-603, 691 (2009).
11.S. Suzuki, S. Harada, R. Kosugi, J. Senzaki, W. Cho, and K. Fukuda, J. Appl. Phys. 92, 6230 (2002).
12.H. Yoshioka, J. Senzaki, A. Shimozato, Y. Tanaka, and H. Okumura, Appl. Phys. Lett. 104, 083516 (2014); an erratum was submitted. The error is excluded from the present paper.
13.H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. 111, 014502 (2012).
14.D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, Hoboken, N.J., 2006).
15.Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, 2nd ed. (Cambridge University Press, Cambridge, 2009).
16.D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010).
17.J.-P. Colinge, L. Floyd, A. J. Quinn, G. Redmond, J. C. Alderman, W. Xiong, C. R. Cleavelin, T. Schulz, K. Schruefer, G. Knoblinger, and P. Patruno, IEEE Electron Device Lett. 27, 172 (2006).
18.P. V. Gray and D. M. Brown, Appl. Phys. Lett. 8, 31 (1966).
19.S. Dhar, X. D. Chen, P. M. Mooney, J. R. Williams, and L. C. Feldman, Appl. Phys. Lett. 92, 102112 (2008).
20.H. Naik, K. Tang, T. Marron, T. P. Chow, and J. Fronheiser, Mater. Sci. Forum 615-617, 785 (2009).
21.S. Dhar, S. Haney, L. Cheng, S.-R. Ryu, A. K. Agarwal, L. C. Yu, and K. P. Cheung, J. Appl. Phys. 108, 054509 (2010).
22.S. Ono, E. Waki, M. Arai, K. Yamasaki, and S. Takagi, Mater. Sci. Forum 778-780, 571 (2014).
23.N. T. Son, C. Persson, U. Lindefelt, W. M. Chen, B. K. Meyer, D. M. Hofmann, and E. Janzén, in Silicon Carbide Recent Major Advances, edited by W.J. Choyke, H. Matsunami, and G. Pensl (Springer, Berlin, 2004), p. 437.
24.V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, Phys. Stat. Sol. (a) 162, 321 (1997).;2-F

Data & Media loading...


Article metrics loading...



We investigated the effects of the interface state density ( ) at the interfaces between SiO and the Si-, C-, and a-faces of 4H-SiC in n-channel metal-oxide-semiconductor field-effect transistors that were subjected to dry/nitridation and pyrogenic/hydrotreatment processes. The interface state density over a very shallow range from the conduction band edge (0.00 eV < ) was evaluated on the basis of the subthreshold slope deterioration at low temperatures (11 K < ). The interface state density continued to increase toward , and at was significantly higher than the value at the conventionally evaluated energies ( = 0.1–0.3 eV). The peak field-effect mobility at 300 K was clearly inversely proportional to at 0.00 eV, regardless of the crystal faces and the oxidation/annealing processes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd