Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4905785
1.
1.Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, ACS Nano 4, 803 (2010).
http://dx.doi.org/10.1021/nn901703e
2.
2.F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
3.
3.Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Adv. Funct. Mater. 19, 3077 (2009).
http://dx.doi.org/10.1002/adfm.200901007
4.
4.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
5.
5.E. Hendry, P. J. Hale, J. Moger, and A. K. Savchenko, Phys. Rev. Lett. 105, 097401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.097401
6.
6.H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, Appl. Phys. Lett. 96, 081917 (2010).
http://dx.doi.org/10.1063/1.3291615
7.
7.D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, Appl. Phys. Lett. 98, 073106 (2011).
http://dx.doi.org/10.1063/1.3552684
8.
8.S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, Laser Phys. Lett. 11, 015101 (2014).
http://dx.doi.org/10.1088/1612-2011/11/1/015101
9.
9.H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, Opt. Express 17, 17630 (2009).
http://dx.doi.org/10.1364/OE.17.017630
10.
10.W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, Opt. Lett. 36, 4089 (2011).
http://dx.doi.org/10.1364/OL.36.004089
11.
11.C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, Opt. Lett. 23, 126 (1998).
http://dx.doi.org/10.1364/OL.23.000126
12.
12.P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, Opt. Lett. 16, 1089 (1991).
http://dx.doi.org/10.1364/OL.16.001089
13.
13.N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, and V. P. Mikhailov, Opt. Lett. 22, 1317 (1997).
http://dx.doi.org/10.1364/OL.22.001317
14.
14.M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, IEEE J. Sel. Top. Quant. 13, 661 (2007).
http://dx.doi.org/10.1109/JSTQE.2007.896094
15.
15.A. Major, D. Sandkuijl, and V. Barzda, Opt. Express 17, 12039 (2009).
http://dx.doi.org/10.1364/OE.17.012039
16.
16.D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, Opt. Express 18, 26107 (2010).
http://dx.doi.org/10.1364/OE.18.026107
17.
17.S. Pekarek, C. Fiebig, M. C. Stumpf, A. E. H. Oehler, K. Paschke, G. Erbert, T. Südmeyer, and U. Keller, Opt. Express 18, 16320 (2010).
http://dx.doi.org/10.1364/OE.18.016320
18.
18.H.-W. Yang, C. Kim, S. Y. Choi, G.-H. Kim, Y. Kobayashi, F. Rotermund, and J. Kim, Opt. Express 20, 29518 (2012).
http://dx.doi.org/10.1364/OE.20.029518
19.
19.S. Y. Choi, J. W. Kim, M. H. Kim, D.-I. Yeom, B. H. Hong, X. Mateos, M. Aguiló, F. Diaz, V. Petrov, U. Griebner, and F. Rotermund, Opt. Express 22, 15626 (2014).
http://dx.doi.org/10.1364/OE.22.015626
20.
20.R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, Opt. Lett. 26, 881 (2001).
http://dx.doi.org/10.1364/OL.26.000881
21.
21.Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, Opt. Lett. 31, 53 (2006).
http://dx.doi.org/10.1364/OL.31.000053
22.
22.Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, Opt. Express 22, 3572 (2014).
http://dx.doi.org/10.1364/OE.22.003572
23.
23.Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. V. Aldana, Opt. Express 21, 18963 (2013).
http://dx.doi.org/10.1364/OE.21.018963
24.
24.T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, Appl. Phys. B 103, 1 (2011).
http://dx.doi.org/10.1007/s00340-011-4485-4
25.
25.A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, Opt. lett. 21, 4416 (2012).
http://dx.doi.org/10.1364/OL.37.004416
26.
26.J. I. Mackenzie and D. P. Shepherd, Opt. Lett. 27, 2161 (2002).
http://dx.doi.org/10.1364/OL.27.002161
27.
27.J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, Opt. Lett. 38, 5090 (2013).
http://dx.doi.org/10.1364/OL.38.005090
28.
28.Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, Opt. Express 22, 9101 (2014).
http://dx.doi.org/10.1364/OE.22.009101
29.
29.R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, Opt. Express 21, 7943 (2013).
http://dx.doi.org/10.1364/OE.21.007943
30.
30.A. Choudhary, S. Dhingra, B. D’Urso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, Opt. Lett. 39, 4325 (2014).
http://dx.doi.org/10.1364/OL.39.004325
31.
31.S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
32.
32.J. A. Morris and C. R. Pollock, Opt. Lett. 15, 440 (1990).
http://dx.doi.org/10.1364/OL.15.000440
33.
33.X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, IEEE J. Quantum Electron. 33, 2286 (1997).
http://dx.doi.org/10.1109/3.644112
34.
34.J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, Appl. Phys. Lett. 97, 091904 (2010).
http://dx.doi.org/10.1063/1.3475393
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4905785
Loading
/content/aip/journal/adva/5/1/10.1063/1.4905785
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4905785
2015-01-08
2016-09-29

Abstract

A diode-pumped Yb:KYW planar waveguide laser, single-mode -switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable -switched operation in a 2.4-cm-long waveguide laser operating near 1027 nm. Average output powers up to 34 mW and pulse durations as short as 349 ns are achieved. The measured output beam profile, clearly exhibiting a single mode, agrees well with the theoretically calculated mode intensity distribution inside the waveguide. As the pump power is increased, the repetition rate and pulse energy increase from 191 to 607 kHz and from 7.4 to 58.6 nJ, respectively, whereas the pulse duration decreases from 2.09 μs to 349 ns.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4905785.html;jsessionid=V6Ckc6pnAtE9UYVhFcjeNzv5.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4905785&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4905785&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4905785'
Right1,Right2,Right3,