Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Carmelo Scarcella, Alberto Tosi, Federica Villa, Simone Tisa, and Franco Zappa, Rev. Sci. Instrum. 84, 123112 (2013).
2.L. Maingault, M. Tarkhov, I. Florya, A. Semenov, R. Espiau de Lamaëstre, P. Cavalier, G. Gol’tsman, J.-P. Poizat, and J.-C. Villégier, J. Appl. Phys. 107, 116103 (2010).
3.T. D. Ladd, F. Jelezko, Laflamme Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464, 7285 (2010).
4. Sharma, Naresh, Warsi, and Naqueeb Ahmad, Phys. Rev. Lett. 110, 080501 (2013).
5.Shi Hai Sun and Lin Mei Liang, Appl. Phys. Lett. 101, 071107 (2012).
6.Patrick J. Clarke, Robert J. Collins, Philip A. Hiskett, Paul D. Townsend, and Gerald S. Buller, Appl. Phys. Lett. 98, 131103 (2011).
7.A. Gaggero, S. Jahanmiri Nejad, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, Appl. Phys. Lett. 97, 151108 (2010).
8.Alessandro Restelli, Joshua C. Bienfang, and Alan L. Migdall, Appl. Phys. Lett. 102, 141104 (2013).
9.M. S. Carroll, K. Childs, R. Jarecki, T. Bauer, and K. Saiz, Appl. Phys. Lett. 93, 183511 (2008).
10.Yong Su Kim, Youn Chang Jeong, Sebastien Sauge, Vadim Makarov, and Yoon-Ho Kim, Rev. Sci. Instrum. 82, 093110 (2011).
11.Gil Bachar, Ilya Baskin, Oleg Shtempluck, and Eyal Buks, Appl. Phys. Lett. 101, 262601 (2012).
12.Hatim Azzouz, Reinier W. Heeres, Sander N. Dorenbos, Raymond N. Schouten, and Valery Zwiller, Rev. Sci. Instrum. 84, 053108 (2013).
13.G. Reithmaier, F. Flassig, P. Hasch, S. Lichtmannecker, K. Müller, J. Vučković, R. Gross, M. Kaniber, and J. J. Finley, Appl. Phys. Lett. 105, 081107 (2014).
14.Xiaohong Yang, Xiulai Xu, Xiuping Wang, Haiqiao Ni, Qin Han, Zhichuan Niu, and David A Williams, Appl. Phys. Lett. 96, 083503 (2010).
15.H. W. Li, B. E. Kardynał, D. J. P. Ellis, A. J. Shields, I. Farrer, and D. A. Ritchie, Appl. Phys. Lett. 93, 153503 (2008).
16.H. Shibata, H. Takesue, T. Honjo, T. Akazaki, and Y. Tokura, Appl. Phys. Lett. 97, 212504 (2010).
17.E. J. Gansen, M. A. Rowe, S. D. Harrington, J. M. Nehls, S. M. Etzel, S. W. Nam, and R. P. Mirin, J. Appl. Phys. 114, 093103 (2013).
18.B. E. Kardynał, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, Appl. Phys. Lett. 90, 181114 (2007).
19.M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M. Y. Su, S. W. Nam, R. P. Mirin, and D. Rosenberg, Appl. Phys. Lett. 89, 253505 (2006).
20.A. J. Shields, M. P. O’Sullivan, I. Farrer, D. A. Ritchie, R. A. Hogg, M. L. Leadbeater, C. E. Norman, and M. Pepper, Appl. Phys. Lett. 76, 3673 (2000).
21.M. A. Rowe, E. J. Gansen, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, J. Vac. Sci. Technol. B 26, 1174 (2008).
22.Javier. Mateos, B. G. Vasallo, Daniel Pardo, Tomás González, Jean-Sébastien Galloo, Sylvain Bollaert, Yannick Roelens, and Alain Cappy, IEEE Trans. Electron Devices 50, 1897 (2003).
23.J. Mateos, B. G. Vasallo, D. Pardo, T. González, J. S. Galloo, Y. Roelens, S. Bollaert, and A. Cappy, Nanotechnology 14, 117 (2003).
24.J. Mateos, B. G. Vasallo, D. Pardo, and T. González, Appl. Phys. Lett. 86, 212103 (2005).
25.I. Iñiguez–de-la-Torre, J. Mateos, D. Pardo, and T. González, J. Appl. Phys. 103, 024502 (2008).
26.W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, Phys. Rev. B. 30, 4571 (1984).
27.C. R. Müller, L. Worschech, J. Heinrich, S. Höfling, and A. Forchel, Appl. Phys. Lett. 93, 063502 (2008).
28.E. J. Gansen, M. A. Rowe, M. B. Greene, G. D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hardfield, S. W. Nam, and R. P. Mirin, Nat. Photon. 1, 585 (2007).

Data & Media loading...


Article metrics loading...



We present a novel device for weak light detection based on self-gated nanowire field effect structure with embedded quantum dots beside the nanowire current channel. The quantum dot with high localization energy will make the device work at high detecting temperature and the nano-channel structure will provide high photocurrent gain. Simulation has been done to optimize the structure, explain the working principle and electrical properties of the devices. The nonlinear current-voltage characteristics have been demonstrated at different temperatures. The responsivity of the device is proven to be more than 4.8 × 106A/W at 50 K.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd