Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. A. Allerman, M. H. Crawford, A. J. Fischer, K. H. A. Bogart, S. R. Lee, D. M. Follstaedt, P. P. Provencio, and D. D. Koleske, J. Cryst. Growth 272, 227 (2004).
2.J. P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M. S. Shur, R. Gaska, M. Shatalov, J. W. Yang, and M. A. Khan, Appl. Phys. Lett. 85, 5532 (2004).
3.M. Asif Khan, Phys. Status Solidi A 203, 1764 (2006).
4.T. M. Al Tahtamouni, A. Sedhain, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 90, 221105 (2007).
5.J. P. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. A. Khan, Appl. Phys. Lett. 83, 3456 (2003).
6.C. J. Collins, A. V. Sampath, G. A. Garrett, W. L. Sarney, H. Shen, M. Wraback, A. Yu. Nikiforov, G. S. Cargill III, and V. Dierolf, Appl. Phys. Lett. 86, 031916 (2005).
7.M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011).
8.R. G. Banal, M. Funato, and Y. Kawakami, Phys. Rev. B 79, 121308 (2009).
9.X.-h. Jiang, J.-j. Shi, M. Zhang, H.-x. Zhong, P. Huang, Y.-m. Ding, T.-j. Yu, B. Shen, J. Lu, and X.-h. Wang, New J. Phys. 16, 113065 (2014).
10.B. N. Pantha, J. Y. Lin, and H. X. Jiang, in GaN and ZnO-based materials and devices, edited by S. Pearton (Springer, New York, 2012).
11.J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Science 327, 60 (2010).
12.L. Gao, F. Xie, and G. Yang, Superlatt. Microstruct. 71, 1 (2014).
13.T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, AIP Advances 4, 047122 (2014).
14.Y. Aoyagi, M. Takeuchi, S. Iwai, and H. Hirayama, Appl. Phys. Lett. 99, 112110 (2011).
15.R. Q. Wu, L. Shen, M. Yang, Z. D. Sha, Y. Q. Cai, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Phys. Rev. B 77, 073203 (2008).
16.Y. Aoyagi, M. Takeuchi, S. Iwai, and H. Hirayama, AIP Advances 2, 012177 (2012).
17.M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 82, 3041 (2003).
18.M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 86, 092108 (2005).
19.T. Kinoshita, T. Obata, H. Yanagi, and S.-i. Inoue, Appl. Phys. Lett. 102, 012105 (2013).
20.S. Nikishin, B. Borisov, V. Kuryatkov, D. Song, M. Holtz, G. A. Garrett, W. L. Sarney, A. V. Sampath, H. Shen, and M. Wraback, Phys. Status Solidi C 5, 1852 (2008).
21.K. P. O’Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999).
22.V. Lemos, E. Silveira, J. R. Leite, A. Tabata, R. Trentin, L. M. R. Scolfaro, T. Frey, D. J. As, D. Schikora, and K. Lischka, Phys. Rev. Lett. 84, 3666 (2000).
23.I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Z. I. Alferov, Y. G. Musikhin, and D. Gerthsen, Phys. Rev. B 66, 155310 (2002).
24.A. V. Sampath, G. A. Garrett, E. D. Readinger, R. W. Enck, H. Shen, M. Wraback, J. R. Grandusky, and L. J. Schowalter, Solid-State Electron. 54, 1130 (2010).
25.M. Zvanut, W. Willoughby, U. Sunay, D. Koleske, A. Allerman, K. Wang, T. Araki, and Y. Nanishi, Phys. Status Solidi C 11, 594 (2014).
26.M. Gao, S. T. Bradley, Y. Cao, D. Jena, Y. Lin, S. A. Ringel, J. Hwang, W. J. Schaff, and L. J. Brillson, J. Appl. Phys. 100, 103512 (2006).
27.Y. Taniyasu and M. Kasu, Appl. Phys. Lett. 99, 251112 (2011).
28.K. Kamiya, Y. Ebihara, M. Kasu, and K. Shiraishi, Jpn. J. Appl. Phys. 51, 02BJ11 (2012).
29.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
30.G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
31.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
32.G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996).
33.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
34.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
35.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
36.H. Schulz and K. H. Thiemann, Solid State Commun. 23, 815 (1977).
37.L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78, 125116 (2008).
38.R. R. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, Appl. Phys. Lett. 98, 151907 (2011).
39.I. Vurgaftman and J. Meyer, J. Appl. Phys. 94, 3675 (2003).
40.C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
41.A. Castiglia, J.-F. Carlin, and N. Grandjean, Appl. Phys. Lett. 98, 213505 (2011).
42.A. Fara, F. Bernardini, and V. Fiorentini, J. Appl. Phys. 85, 2001 (1999).
43.Y. Zhang, W. Liu, and H. Niu, Phys. Rev. B 77, 035201 (2008).
44.M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 94, 091903 (2009).
45.M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 89, 152120 (2006).
46.K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 83, 878 (2003).
47.M.-F. Li, Modern semiconductor quantum physics (World scientific, 1995).

Data & Media loading...


Article metrics loading...



We calculate Mg-acceptor activation energy and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on in nanoscale (AlN) /(GaN) superlattice (SL), a substitution for Al GaN disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and Mg-O ( = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing . The shorter the Mg-O bond is, the smaller the is. The Mg-acceptor activation energy can be reduced significantly by Mg-O -codoping. Our calculated for 2Mg-O is 0.21 eV, and can be further reduced to 0.13 eV for 3Mg-O, which results in a high hole concentration in the order of 1020 cm−3 at room temperature in (AlN) /(GaN) SL. Our results prove that Mg-O ( = 2,3) -codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve -type doping efficiency in Al-rich AlGaN.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd