Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4905884
1.
1.A. A. Allerman, M. H. Crawford, A. J. Fischer, K. H. A. Bogart, S. R. Lee, D. M. Follstaedt, P. P. Provencio, and D. D. Koleske, J. Cryst. Growth 272, 227 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.08.035
2.
2.J. P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M. S. Shur, R. Gaska, M. Shatalov, J. W. Yang, and M. A. Khan, Appl. Phys. Lett. 85, 5532 (2004).
http://dx.doi.org/10.1063/1.1831557
3.
3.M. Asif Khan, Phys. Status Solidi A 203, 1764 (2006).
http://dx.doi.org/10.1002/pssa.200565427
4.
4.T. M. Al Tahtamouni, A. Sedhain, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 90, 221105 (2007).
http://dx.doi.org/10.1063/1.2743956
5.
5.J. P. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. A. Khan, Appl. Phys. Lett. 83, 3456 (2003).
http://dx.doi.org/10.1063/1.1623321
6.
6.C. J. Collins, A. V. Sampath, G. A. Garrett, W. L. Sarney, H. Shen, M. Wraback, A. Yu. Nikiforov, G. S. Cargill III, and V. Dierolf, Appl. Phys. Lett. 86, 031916 (2005).
http://dx.doi.org/10.1063/1.1856702
7.
7.M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011).
http://dx.doi.org/10.1088/0268-1242/26/1/014036
8.
8.R. G. Banal, M. Funato, and Y. Kawakami, Phys. Rev. B 79, 121308 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.121308
9.
9.X.-h. Jiang, J.-j. Shi, M. Zhang, H.-x. Zhong, P. Huang, Y.-m. Ding, T.-j. Yu, B. Shen, J. Lu, and X.-h. Wang, New J. Phys. 16, 113065 (2014).
http://dx.doi.org/10.1088/1367-2630/16/11/113065
10.
10.B. N. Pantha, J. Y. Lin, and H. X. Jiang, in GaN and ZnO-based materials and devices, edited by S. Pearton (Springer, New York, 2012).
11.
11.J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Science 327, 60 (2010).
http://dx.doi.org/10.1126/science.1183226
12.
12.L. Gao, F. Xie, and G. Yang, Superlatt. Microstruct. 71, 1 (2014).
http://dx.doi.org/10.1016/j.spmi.2014.03.034
13.
13.T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, AIP Advances 4, 047122 (2014).
http://dx.doi.org/10.1063/1.4871996
14.
14.Y. Aoyagi, M. Takeuchi, S. Iwai, and H. Hirayama, Appl. Phys. Lett. 99, 112110 (2011).
http://dx.doi.org/10.1063/1.3641476
15.
15.R. Q. Wu, L. Shen, M. Yang, Z. D. Sha, Y. Q. Cai, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Phys. Rev. B 77, 073203 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.073203
16.
16.Y. Aoyagi, M. Takeuchi, S. Iwai, and H. Hirayama, AIP Advances 2, 012177 (2012).
http://dx.doi.org/10.1063/1.3698156
17.
17.M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 82, 3041 (2003).
http://dx.doi.org/10.1063/1.1559444
18.
18.M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 86, 092108 (2005).
http://dx.doi.org/10.1063/1.1879098
19.
19.T. Kinoshita, T. Obata, H. Yanagi, and S.-i. Inoue, Appl. Phys. Lett. 102, 012105 (2013).
http://dx.doi.org/10.1063/1.4773594
20.
20.S. Nikishin, B. Borisov, V. Kuryatkov, D. Song, M. Holtz, G. A. Garrett, W. L. Sarney, A. V. Sampath, H. Shen, and M. Wraback, Phys. Status Solidi C 5, 1852 (2008).
http://dx.doi.org/10.1002/pssc.200778699
21.
21.K. P. O’Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.237
22.
22.V. Lemos, E. Silveira, J. R. Leite, A. Tabata, R. Trentin, L. M. R. Scolfaro, T. Frey, D. J. As, D. Schikora, and K. Lischka, Phys. Rev. Lett. 84, 3666 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3666
23.
23.I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Z. I. Alferov, Y. G. Musikhin, and D. Gerthsen, Phys. Rev. B 66, 155310 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155310
24.
24.A. V. Sampath, G. A. Garrett, E. D. Readinger, R. W. Enck, H. Shen, M. Wraback, J. R. Grandusky, and L. J. Schowalter, Solid-State Electron. 54, 1130 (2010).
http://dx.doi.org/10.1016/j.sse.2010.05.006
25.
25.M. Zvanut, W. Willoughby, U. Sunay, D. Koleske, A. Allerman, K. Wang, T. Araki, and Y. Nanishi, Phys. Status Solidi C 11, 594 (2014).
http://dx.doi.org/10.1002/pssc.201300515
26.
26.M. Gao, S. T. Bradley, Y. Cao, D. Jena, Y. Lin, S. A. Ringel, J. Hwang, W. J. Schaff, and L. J. Brillson, J. Appl. Phys. 100, 103512 (2006).
http://dx.doi.org/10.1063/1.2382622
27.
27.Y. Taniyasu and M. Kasu, Appl. Phys. Lett. 99, 251112 (2011).
http://dx.doi.org/10.1063/1.3671668
28.
28.K. Kamiya, Y. Ebihara, M. Kasu, and K. Shiraishi, Jpn. J. Appl. Phys. 51, 02BJ11 (2012).
http://dx.doi.org/10.7567/JJAP.51.02BJ11
29.
29.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
30.
30.G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
31.
31.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
32.
32.G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
33.
33.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
34.
34.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
35.
35.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
36.
36.H. Schulz and K. H. Thiemann, Solid State Commun. 23, 815 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90959-0
37.
37.L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78, 125116 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125116
38.
38.R. R. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, Appl. Phys. Lett. 98, 151907 (2011).
http://dx.doi.org/10.1063/1.3576570
39.
39.I. Vurgaftman and J. Meyer, J. Appl. Phys. 94, 3675 (2003).
http://dx.doi.org/10.1063/1.1600519
40.
40.C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
41.
41.A. Castiglia, J.-F. Carlin, and N. Grandjean, Appl. Phys. Lett. 98, 213505 (2011).
http://dx.doi.org/10.1063/1.3593964
42.
42.A. Fara, F. Bernardini, and V. Fiorentini, J. Appl. Phys. 85, 2001 (1999).
http://dx.doi.org/10.1063/1.369197
43.
43.Y. Zhang, W. Liu, and H. Niu, Phys. Rev. B 77, 035201 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.035201
44.
44.M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 94, 091903 (2009).
http://dx.doi.org/10.1063/1.3094754
45.
45.M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 89, 152120 (2006).
http://dx.doi.org/10.1063/1.2362582
46.
46.K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 83, 878 (2003).
http://dx.doi.org/10.1063/1.1594833
47.
47.M.-F. Li, Modern semiconductor quantum physics (World scientific, 1995).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4905884
Loading
/content/aip/journal/adva/5/1/10.1063/1.4905884
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4905884
2015-01-09
2016-12-09

Abstract

We calculate Mg-acceptor activation energy and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on in nanoscale (AlN) /(GaN) superlattice (SL), a substitution for Al GaN disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and Mg-O ( = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing . The shorter the Mg-O bond is, the smaller the is. The Mg-acceptor activation energy can be reduced significantly by Mg-O -codoping. Our calculated for 2Mg-O is 0.21 eV, and can be further reduced to 0.13 eV for 3Mg-O, which results in a high hole concentration in the order of 1020 cm−3 at room temperature in (AlN) /(GaN) SL. Our results prove that Mg-O ( = 2,3) -codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve -type doping efficiency in Al-rich AlGaN.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4905884.html;jsessionid=vxGgcyRrxv1pTRK3XpY2sQf8.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4905884&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4905884&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4905884'
Right1,Right2,Right3,