Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4905888
1.
1.B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
http://dx.doi.org/10.1038/nmat708
2.
2.P.H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002).
http://dx.doi.org/10.1109/22.989974
3.
3.M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, a. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 77, 4049 (2000).
http://dx.doi.org/10.1063/1.1332415
4.
4.N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207402
5.
5.H. Tao, C. Bingham, a. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, Phys. Rev. B 78, 241103 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.241103
6.
6.M. Diem, T. Koschny, and C.M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.033101
7.
7.H. Raether, Surface Plasmonson Smooth and Rough Surfaces and on Gratings (Springer, 1998).
8.
8.H.A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
9.
9.R. a. Pala, J. White, E. Barnard, J. Liu, and M.L. Brongersma, Adv. Mater. 21, 3504 (2009).
http://dx.doi.org/10.1002/adma.200900331
10.
10.V. Giannini, A. Berrier, S. a Maier, J.A. Sánchez-Gil, and J.G. Rivas, Opt. Express 18, 2797 (2010).
http://dx.doi.org/10.1364/OE.18.002797
11.
11.A. Berrier, R. Ulbricht, M. Bonn, and J.G. Rivas, Opt. Express 18, 23226 (2010).
http://dx.doi.org/10.1364/OE.18.023226
12.
12.T.H. Isaac, W.L. Barnes, and E. Hendry, Appl. Phys. Lett. 93, 241115 (2008).
http://dx.doi.org/10.1063/1.3049350
13.
13.Y. Zhang and A. Berrier, CHINESE Opt. Lett. 9, 10 (2011).
http://dx.doi.org/10.3788/COL201109.071602
14.
14.S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, Appl. Phys. Lett. 79, 3923 (2001).
http://dx.doi.org/10.1063/1.1413498
15.
15.E. Hendry, F. Garcia-Vidal, L. Martin-Moreno, J. Rivas, M. Bonn, a. Hibbins, and M. Lockyear, Phys. Rev. Lett. 100, 123901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.123901
16.
16.T. W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
http://dx.doi.org/10.1038/35570
17.
17.M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, Opt. Express 20, 25513 (2012).
http://dx.doi.org/10.1364/OE.20.025513
18.
18.R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, Opt. Express 20, 28017 (2012).
http://dx.doi.org/10.1364/OE.20.028017
19.
19.M.G. Nielsen, D.K. Gramotnev, A. Pors, O. Albrektsen, and S.I. Bozhevolnyi, Opt. Express 19, 19310 (2011).
http://dx.doi.org/10.1364/OE.19.019310
20.
20.D.M. Caughey and R.E. Thomas, Proc. IEEE 55, 2192 (1967).
http://dx.doi.org/10.1109/PROC.1967.6123
21.
21.P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, and a. Boltasseva, Laser Photon. Rev. 4, 795 (2010).
http://dx.doi.org/10.1002/lpor.200900055
22.
22.R.W. Wood, Phys. Rev. 48, 928 (1935).
http://dx.doi.org/10.1103/PhysRev.48.928
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4905888
Loading
/content/aip/journal/adva/5/1/10.1063/1.4905888
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4905888
2015-01-09
2016-12-10

Abstract

The property of highly doped Si as the plasmonic material in the THz regime is analyzed, based on which the design of efficient and broadband Terahertz plasmonic absorbers is proposed and the performance of these absorbers is numerically investigated. Numerical results from the reflection spectra demonstrate that these structures exhibit high absorption in the terahertz frequencies with large bandwidth and high tunability. It is also shown that the same level of absorptivity and bandwidth can be achieved when the top layer of highly dopes Si stripes are replaced with regular metal materials e.g. copper, highly facilitating the fabrication and practical use of the proposed structure in real Terahertz applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4905888.html;jsessionid=4MoyJ9o8jJjs4pwD3HbWZzFe.x-aip-live-03?itemId=/content/aip/journal/adva/5/1/10.1063/1.4905888&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4905888&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4905888'
Right1,Right2,Right3,