Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.John Jacob and Khadar M. Abdul, J. Appl. Phys. 107, 114310 (2010).
2.C. Klewe, M. Meinert, A. Boehnke, K. Kuepper, E. Arenholz, A. Gupta, J. M. Schmalhorst, T. Kuschel, and G. Reiss, J. Appl. Phys. 115, 123903 (2014).
3.Zhaoming Tian, Changming Zhu, Yong Liu, Jing Shi, Zhongwen Ouyang, Zhengcai Xia, Guihuan Du, and Songliu Yuan, J. Appl. Phys. 115, 083902 (2014).
4.S. Matzen, J. B. Moussy, P. Wei, C. Gatel, J. C. Cezar, M. A. Arrio, Ph. Sainctavit, and J. S. Moodera, App. Phys. Lett. 104, 182404 (2014).
5.B. Ghosh, M. Sardar, and S. Banerjee, J. Appl. Phys. 114, 183903 (2013).
6.Ronald J. Tackett, Abdul W. Bhuiya, and Cristian E. Botez, Nanotechnology 20, 445705 (2009).
7.Z. P. Niu, Y. Wang, and F. S. Li, J. Mater. Sci. 41, 5726 (2006).
8.Baskaran Senthilkumar, Ramakrishnan Kalai Selvan, Palanisamy Vinothbabu, Ilana Perelshtein, and Aharon Gedanken, Mater. Chem. Phys. 130, 285 (2011).
9.Sukhdeep Sing, N. K. Ralhan, R. K. Kotnala, and Kuldeep Chand Verma, Indian J. Pure & App. Phys. 50, 739 (2012).
10.Khalid Mujasam Batoo, Feroz Ahmed Mir, M. S. Abd El-Sadek, Md. Shahabuddin, and Niyaz Ahmed, J. Nanopart. Res. 15, 2067 (2013).
11.S. Chkoundali, S. Ammar, N. Jouini, F. Fievet, P. Molinie, M. Danot, F. Villain, and J. M. Greneche, J. Phys.: Condens. Matter 16, 4357 (2004).
12.Manish Srivastava, S. Chaubey, and Animesh K. Ojha, Mat. Chem. & Phys. 118, 174 (2009).
13.Gagan Dixit, J. P. Singh, R. C. Srivastava, H. M. Agrawal, and R. J. Chaudhary, Adv. Mat. Lett. 3(1), 21 (2012).
14.P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, and C. Muthamizhchelvan, J. Alloys & Compnds. 563, 6 (2013).
15.K. Maaz, S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu, and J. L. Duan, J. Mag. Mag. Mater. 321, 1838 (2009).
16.H. Perron, T. Mellier, C. Domain, J. Roques, E. Simoni, R. Drot, and H. Catalette, J. Phys.: Conden. Mater 19, 346219 (2007).
17.Zhenhua Shi, Jing Zhang, Daqiang Gao, Zhonghua Zhu, Zhaolong Yang, Zhipeng Zhang, and Desheng Xue, Nanoscale Res. Lett. 8, 404 (2013).
18.D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, J. Phys. Chem. C 113, 8606 (2009).
19.Fabio Luis Zabotto, Alexandre Jose Gualdi, Jose Antonio Eiras, Adilson Jesus Aparecido de Oliveira, and Ducinei Garcia, Mater. Res. 15(3), 428 (2012).
20.Byong Yong Yu and Seung-Yeop Kwak, Dalton Transactions 40, 9989 (2011).
21.Wenwu Cao and Clive A. Randall, J. Phys. Chem. Solids 57 , 10 1499 (1995).
22.Amikam Aharoni, J. Appl. Phys. 90(9), 4645 (2001).
23.N. I. Vlasova, G. S. Kandaurova, and N. N. Shchegoleav, J. Mag. Mag. Mater. 222, 138 (2000).
24.R. D. Sanchez, J. Rivas, P. Vaqueiro, M. A. Lopez-Quintela, and D. Caeiro, J. Mag. Mag. Mater. 247, 92 (2002).
25.G. Q. Li, H. Takahoshi, H. Ito, H. Saito, S. Ishio, T. Shima, and K. Takanashi, J. Appl. Phys. 94, 9 (2003).
26.Xavier Batlle and Amilcar Labarta, J. Phys. D: Appl. Phys. 35, 15 (2002).
27.M. H. Mahmoud, A. M. Elshahawy, Salah A. Makhlouf, and H. H. Hamdeh, J. Magn. Magn. Mater. 369, 55 (2014).
28.Jing Jiang and Yan-Min Yang, Materials Letters 61, 4276 (2007).
29.D. A. Garanin and H. Kachkachi, Phys. Rev. Lett. 90, 065504 (2003).
30.Abolfaz Akbarzadeh, Mohammad Samiei, and Soodabeh Davaran, Nano. Res Lett. 7:144 1186/1556-276 (2012).
31.Arati G. Kolhatkar, Andrew C. Jamison, Dmitri Litvinov, Richard C. Willson, and T. Randall Lee, Inter. J. Mol. Sci. 14 , 8, 15977 (2013).
32.N. Ponpandian, P. Balaya, and A. Narayanasamy, J. Phys.: Condens. Matter 14, 3221 (2002).
33.K. Kamala Bharathi, G. Markandeyulu, and C. V. Ramana, AIP Advances 2, 012139 (2012).
34.C. Behera, Piyush R. Das, and R. N. P. Choudhary, J. Electronic Mater. 43 , 9, 3539 (2014).
35.R. C. Kambale, P. A. Shaikh, C. H. Bhosale, K. Y. Rajpure, and Y. D. Kolekar, Smart Mater. Struct. 18, 085014 (2009).
36.Z. Z. Lazarevic, C. Jovalekic, A. Milutinuvi, D. Sekulic, M. Slankamenac, M. Romcevic, and N. Z. Romcevic, Ferroelectrics 448, 1 (2013).
37.R. N. Bhowmik and N. Naresh, Inter. J. Engg. Sci. & Tech. 2 , 8 40 (2010).
38.Z. V. Mocanu, G. Apachitei, L. Padurariu, F. Tudorache, L. P. Curecheriu, and L. Mitoseriu, The Euro. Physical. J. Appl. Phys. 56 , 1 10102 (2011).
39.M. S. Al-Hoshan, J. P. Singh, A. M. Al-Mayouf, A. A. Al-Suhybani, and M. N. Shaddad, Int. J. Electrochem. Sci. 7, 4959 (2012).
40.R. K. Panda and D. Behera, J. Alloys Compds. 587, 481 (2014).

Data & Media loading...


Article metrics loading...



We report here the investigations on the size dependent variation of magnetic properties of nickel ferrite nanoparticles. Nickel ferrite nanoparticles of different sizes (14 to 22 nm) were prepared by the sol-gel route at different annealing temperatures. They are characterized by , , and techniques for the confirmation of the temperature of phase formation, thermal stability, crystallinity, morphology and structural status of the nickel ferrite nanoparticles. The magnetization studies revealed that the saturation magnetization (), retentivity () increase, while coercivity () and anisotropy () decrease as the particle size increases. The observed value of is found to be relatively higher for a particle size of 22 nm. In addition, we have estimated the magnetic domain size using magnetic data and correlated to the average particle size. The calculated magnetic domain size is closely matching with the particle size estimated from XRD. Impedance spectroscopy was employed to study the samples in an equivalent circuit to understand their transport phenomena. It shows that nickel ferrite nanoparticles exhibit a non-Debye behavior with increasing particle size due to the influence of increasing disorders, surface effects, grain size and grain boundaries, etc.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd