Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4906101
1.
1.John Jacob and Khadar M. Abdul, J. Appl. Phys. 107, 114310 (2010).
http://dx.doi.org/10.1063/1.3429202
2.
2.C. Klewe, M. Meinert, A. Boehnke, K. Kuepper, E. Arenholz, A. Gupta, J. M. Schmalhorst, T. Kuschel, and G. Reiss, J. Appl. Phys. 115, 123903 (2014).
http://dx.doi.org/10.1063/1.4869400
3.
3.Zhaoming Tian, Changming Zhu, Yong Liu, Jing Shi, Zhongwen Ouyang, Zhengcai Xia, Guihuan Du, and Songliu Yuan, J. Appl. Phys. 115, 083902 (2014).
http://dx.doi.org/10.1063/1.4865800
4.
4.S. Matzen, J. B. Moussy, P. Wei, C. Gatel, J. C. Cezar, M. A. Arrio, Ph. Sainctavit, and J. S. Moodera, App. Phys. Lett. 104, 182404 (2014).
http://dx.doi.org/10.1063/1.4871733
5.
5.B. Ghosh, M. Sardar, and S. Banerjee, J. Appl. Phys. 114, 183903 (2013).
http://dx.doi.org/10.1063/1.4829704
6.
6.Ronald J. Tackett, Abdul W. Bhuiya, and Cristian E. Botez, Nanotechnology 20, 445705 (2009).
http://dx.doi.org/10.1088/0957-4484/20/44/445705
7.
7.Z. P. Niu, Y. Wang, and F. S. Li, J. Mater. Sci. 41, 5726 (2006).
http://dx.doi.org/10.1007/s10853-006-0099-3
8.
8.Baskaran Senthilkumar, Ramakrishnan Kalai Selvan, Palanisamy Vinothbabu, Ilana Perelshtein, and Aharon Gedanken, Mater. Chem. Phys. 130, 285 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2011.06.043
9.
9.Sukhdeep Sing, N. K. Ralhan, R. K. Kotnala, and Kuldeep Chand Verma, Indian J. Pure & App. Phys. 50, 739 (2012).
10.
10.Khalid Mujasam Batoo, Feroz Ahmed Mir, M. S. Abd El-Sadek, Md. Shahabuddin, and Niyaz Ahmed, J. Nanopart. Res. 15, 2067 (2013).
http://dx.doi.org/10.1007/s11051-013-2067-6
11.
11.S. Chkoundali, S. Ammar, N. Jouini, F. Fievet, P. Molinie, M. Danot, F. Villain, and J. M. Greneche, J. Phys.: Condens. Matter 16, 4357 (2004).
http://dx.doi.org/10.1088/0953-8984/16/24/017
12.
12.Manish Srivastava, S. Chaubey, and Animesh K. Ojha, Mat. Chem. & Phys. 118, 174 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2009.07.023
13.
13.Gagan Dixit, J. P. Singh, R. C. Srivastava, H. M. Agrawal, and R. J. Chaudhary, Adv. Mat. Lett. 3(1), 21 (2012).
http://dx.doi.org/10.5185/amlett.2011.6280
14.
14.P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, and C. Muthamizhchelvan, J. Alloys & Compnds. 563, 6 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.02.077
15.
15.K. Maaz, S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu, and J. L. Duan, J. Mag. Mag. Mater. 321, 1838 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.11.098
16.
16.H. Perron, T. Mellier, C. Domain, J. Roques, E. Simoni, R. Drot, and H. Catalette, J. Phys.: Conden. Mater 19, 346219 (2007).
http://dx.doi.org/10.1088/0953-8984/19/34/346219
17.
17.Zhenhua Shi, Jing Zhang, Daqiang Gao, Zhonghua Zhu, Zhaolong Yang, Zhipeng Zhang, and Desheng Xue, Nanoscale Res. Lett. 8, 404 (2013).
http://dx.doi.org/10.1186/1556-276X-8-404
18.
18.D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, J. Phys. Chem. C 113, 8606 (2009).
http://dx.doi.org/10.1021/jp901077c
19.
19.Fabio Luis Zabotto, Alexandre Jose Gualdi, Jose Antonio Eiras, Adilson Jesus Aparecido de Oliveira, and Ducinei Garcia, Mater. Res. 15(3), 428 (2012).
http://dx.doi.org/10.1590/S1516-14392012005000043
20.
20.Byong Yong Yu and Seung-Yeop Kwak, Dalton Transactions 40, 9989 (2011).
http://dx.doi.org/10.1039/c1dt10650c
21.
21.Wenwu Cao and Clive A. Randall, J. Phys. Chem. Solids 57 , 10 1499 (1995).
http://dx.doi.org/10.1016/0022-3697(96)00019-4
22.
22.Amikam Aharoni, J. Appl. Phys. 90(9), 4645 (2001).
http://dx.doi.org/10.1063/1.1407313
23.
23.N. I. Vlasova, G. S. Kandaurova, and N. N. Shchegoleav, J. Mag. Mag. Mater. 222, 138 (2000).
http://dx.doi.org/10.1016/S0304-8853(00)00506-0
24.
24.R. D. Sanchez, J. Rivas, P. Vaqueiro, M. A. Lopez-Quintela, and D. Caeiro, J. Mag. Mag. Mater. 247, 92 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00170-1
25.
25.G. Q. Li, H. Takahoshi, H. Ito, H. Saito, S. Ishio, T. Shima, and K. Takanashi, J. Appl. Phys. 94, 9 (2003).
http://dx.doi.org/10.1063/1.1618937
26.
26.Xavier Batlle and Amilcar Labarta, J. Phys. D: Appl. Phys. 35, 15 (2002).
http://dx.doi.org/10.1088/0022-3727/35/6/201
27.
27.M. H. Mahmoud, A. M. Elshahawy, Salah A. Makhlouf, and H. H. Hamdeh, J. Magn. Magn. Mater. 369, 55 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.06.011
28.
28.Jing Jiang and Yan-Min Yang, Materials Letters 61, 4276 (2007).
http://dx.doi.org/10.1016/j.matlet.2007.01.111
29.
29.D. A. Garanin and H. Kachkachi, Phys. Rev. Lett. 90, 065504 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.065504
30.
30.Abolfaz Akbarzadeh, Mohammad Samiei, and Soodabeh Davaran, Nano. Res Lett. 7:144 1186/1556-276 (2012).
http://dx.doi.org/10.1186/1556-276X-7-144
31.
31.Arati G. Kolhatkar, Andrew C. Jamison, Dmitri Litvinov, Richard C. Willson, and T. Randall Lee, Inter. J. Mol. Sci. 14 , 8, 15977 (2013).
http://dx.doi.org/10.3390/ijms140815977
32.
32.N. Ponpandian, P. Balaya, and A. Narayanasamy, J. Phys.: Condens. Matter 14, 3221 (2002).
http://dx.doi.org/10.1088/0953-8984/14/12/311
33.
33.K. Kamala Bharathi, G. Markandeyulu, and C. V. Ramana, AIP Advances 2, 012139 (2012).
http://dx.doi.org/10.1063/1.3687219
34.
34.C. Behera, Piyush R. Das, and R. N. P. Choudhary, J. Electronic Mater. 43 , 9, 3539 (2014).
http://dx.doi.org/10.1007/s11664-014-3216-0
35.
35.R. C. Kambale, P. A. Shaikh, C. H. Bhosale, K. Y. Rajpure, and Y. D. Kolekar, Smart Mater. Struct. 18, 085014 (2009).
http://dx.doi.org/10.1088/0964-1726/18/8/085014
36.
36.Z. Z. Lazarevic, C. Jovalekic, A. Milutinuvi, D. Sekulic, M. Slankamenac, M. Romcevic, and N. Z. Romcevic, Ferroelectrics 448, 1 (2013).
http://dx.doi.org/10.1080/00150193.2013.822257
37.
37.R. N. Bhowmik and N. Naresh, Inter. J. Engg. Sci. & Tech. 2 , 8 40 (2010).
38.
38.Z. V. Mocanu, G. Apachitei, L. Padurariu, F. Tudorache, L. P. Curecheriu, and L. Mitoseriu, The Euro. Physical. J. Appl. Phys. 56 , 1 10102 (2011).
http://dx.doi.org/10.1051/epjap/2011110094
39.
39.M. S. Al-Hoshan, J. P. Singh, A. M. Al-Mayouf, A. A. Al-Suhybani, and M. N. Shaddad, Int. J. Electrochem. Sci. 7, 4959 (2012).
40.
40.R. K. Panda and D. Behera, J. Alloys Compds. 587, 481 (2014).
http://dx.doi.org/10.1016/j.jallcom.2013.10.195
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4906101
Loading
/content/aip/journal/adva/5/1/10.1063/1.4906101
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4906101
2015-01-13
2016-09-28

Abstract

We report here the investigations on the size dependent variation of magnetic properties of nickel ferrite nanoparticles. Nickel ferrite nanoparticles of different sizes (14 to 22 nm) were prepared by the sol-gel route at different annealing temperatures. They are characterized by , , and techniques for the confirmation of the temperature of phase formation, thermal stability, crystallinity, morphology and structural status of the nickel ferrite nanoparticles. The magnetization studies revealed that the saturation magnetization (), retentivity () increase, while coercivity () and anisotropy () decrease as the particle size increases. The observed value of is found to be relatively higher for a particle size of 22 nm. In addition, we have estimated the magnetic domain size using magnetic data and correlated to the average particle size. The calculated magnetic domain size is closely matching with the particle size estimated from XRD. Impedance spectroscopy was employed to study the samples in an equivalent circuit to understand their transport phenomena. It shows that nickel ferrite nanoparticles exhibit a non-Debye behavior with increasing particle size due to the influence of increasing disorders, surface effects, grain size and grain boundaries, etc.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4906101.html;jsessionid=9Q3FNfFKu8GxQYzc_ozWVPi4.x-aip-live-03?itemId=/content/aip/journal/adva/5/1/10.1063/1.4906101&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4906101&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4906101'
Right1,Right2,Right3,