Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4906257
1.
1.V. V. Afanasev, M. Bassler, G. Pensl, M. J. Schulz, and E. Stein von Kamienski, J. Appl. Phys. 79, 3108 (1996).
http://dx.doi.org/10.1063/1.361254
2.
2.J. A. Cooper, Jr., Phys. Status Solidi A 162, 305 (1997).
http://dx.doi.org/10.1002/1521-396X(199707)162:1%3C305::AID-PSSA305%3E3.0.CO;2-7
3.
3.V. Presser and K. G. Nickel, Crit. Rev. Solid State Mater. Sci. 33, 1 (2008).
http://dx.doi.org/10.1080/10408430701718914
4.
4.S. Dhar, S. R. Wang, J. R. Williams, S. T. Pantelides, and L. C. Feldman, MRS Bull. 30, 288 (2005).
http://dx.doi.org/10.1557/mrs2005.75
5.
5.V. V. Afanas’ev and A. Stesmans, Phys. Rev. Lett. 78, 2437 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2437
6.
6.V. V. Afanas’ev, M. Bassler, G. Pensl, and M. Schultz, Phys. Status Solidi A 162, 321 (1997).
http://dx.doi.org/10.1002/1521-396X(199707)162:1%3C321::AID-PSSA321%3E3.0.CO;2-F
7.
7.G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman, and R. A. Weller, Appl. Phys. Lett. 76, 1713 (2000).
http://dx.doi.org/10.1063/1.126167
8.
8.S. Wang, S. Dhar, S. R. Wang, A. C. Ahyi, A. Franceschetti, J. R. Williams, L. C. Feldman, and S. T. Pantelides, Phys. Rev. Lett. 98, 026101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.026101
9.
9.M. Di Ventra and S. T. Pantelides, Phys. Rev. Lett. 83, 1624 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1624
10.
10.S. Wang, M. Di Ventra, S. G. Kim, and S. T. Pantelides, Phys. Rev. Lett. 86, 5946 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5946
11.
11.W. Li, J. Zhao, Q. Zhu, and D. Wang, Appl. Phys. Lett. 103, 211603 (2013).
http://dx.doi.org/10.1063/1.4832635
12.
12.M. Bassler, G. Pensl, and V. V. Afanas’ev, Diamond and Related Materials 6, 1472 (1997).
http://dx.doi.org/10.1016/S0925-9635(97)00074-5
13.
13.A. Koh, A. Kestle, C. Wright, S. P. Wilks, P. A. Mawby, and W. R. Bowen, Appl. Surf. Sci. 174, 210 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00150-7
14.
14.K. C. Chang, N. T. Nuhfer, L. M. Porter, and Q. Wahab, Appl. Phys. Lett. 77, 2186 (2000).
http://dx.doi.org/10.1063/1.1314293
15.
15.K.-C. Chang, Y. Cao, L. M. Porter, J. Bentley, S. Dhar, L. C. Feldman, and J. R. Williams, J. Appl. Phys. 97, 104920 (2005).
http://dx.doi.org/10.1063/1.1904728
16.
16.A. F. Basile, J. Rozen, J. R. Williams, L. C. Feldman, and P. M. Mooney, J. Appl. Phys. 109, 064514 (2011).
http://dx.doi.org/10.1063/1.3552303
17.
17.J. Rozen, S. Dhar, M. E. Zvanut, J. R. Williams, and L. C. Feldman, J. Appl. Phys. 105, 124506 (2009).
http://dx.doi.org/10.1063/1.3131845
18.
18.G. Pensl, S. Beljakowa, T. Frank, K. Gao, F. Speck, T. Seyller, L. Ley, F. Ciobanu, V. V. Afanas’ev, A. Stesmans, T. Kimoto, and A. Schöner, Phys. Status Solidi B 245, 1378 (2008).
http://dx.doi.org/10.1002/pssb.200844011
19.
19.E. Pippel, J. Woltersdorf, H. Ö. ólafsson, and E. Ö. Sveinbjörnsson, J. Appl. Phys. 97, 034302 (2005).
http://dx.doi.org/10.1063/1.1836004
20.
20.J. M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke, Phys. Rev. B 72, 115323 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.115323
21.
21.J. M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke, Phys. Rev. B 71, 235321 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235321
22.
22.V. V. Afanas’ev, Microelectron. Eng. 48, 241 (1999).
http://dx.doi.org/10.1016/S0167-9317(99)00379-2
23.
23.V. V. Afanas’ev, F. Ciobanu, S. Dimitrijev, G. Pensl, and A. Stesmans, J. Phys.: Condens. Matter 16, S1839 (2004).
24.
24.A. Gavrikov, A. Knizhnik, A. Safonov, A. Scherbinin, A. Bagatur’yants, B. Potapkin, A. Chatterjee, and K. Matocha, J. Appl. Phys. 104, 093508 (2008).
http://dx.doi.org/10.1063/1.3006004
25.
25.F. Devynck, F. Giustino, P. Broqvist, and A. Pasquarello, Phys. Rev. B 76, 075351 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075351
26.
26.F. Devynck, A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. B 83, 195319 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195319
27.
27.X. Shen, M. P. Oxley, Y. Puzyrev, B. R. Tuttle, G. Duscher, and S. T. Pantelides, J. Appl. Phys. 108, 123705 (2010).
http://dx.doi.org/10.1063/1.3517142
28.
28.X. Shen and S. T. Pantelides, Appl. Phys. Lett. 98, 053507 (2011).
http://dx.doi.org/10.1063/1.3553786
29.
29.W. Li, J. Zhao, Q. Zhu, and D. Wang, Phys. Rev. B 87, 085320 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085320
30.
30.S. Salemi, N. Goldsman, D. P. Ettisserry, A. Akturk, and A. Lelis, J. Appl. Phys. 113, 053703 (2013).
http://dx.doi.org/10.1063/1.4789615
31.
31.R. Buczko, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 84, 943 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.943
32.
32.C. Önneby and C. G. Pantano, J. Vac. Sci. Technol. A 15, 1597 (1997).
http://dx.doi.org/10.1116/1.580951
33.
33.Q. Zhu, L. Huang, W. Li, S. Li, and D. Wang, Appl. Phys. Lett. 99, 082102 (2011).
http://dx.doi.org/10.1063/1.3628322
34.
34.T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das, Appl. Phys. Lett. 93, 022108 (2008).
http://dx.doi.org/10.1063/1.2949081
35.
35.T. L. Biggerstaff, C. L. Reynolds, Jr., T. Zheleva, A. Lelis, D. Habersat, S. Haney, S.-H. Ryu, A. Agarwal, and G. Duscher, Appl. Phys. Lett. 95, 032108 (2009).
http://dx.doi.org/10.1063/1.3144272
36.
36.X. Zhu, H. D. Lee, T. Feng, A. C. Ahyi, D. Mastrogiovanni, A. Wan, E. Garfunkel, J. R. Williams, T. Gustafsson, and L. C. Feldman, Appl. Phys. Lett. 97, 071908 (2010).
http://dx.doi.org/10.1063/1.3481672
37.
37.H. Watanabe, T. Hosoi, T. Kirino, Y. Kagei, Y. Uenishi, A. Chanthaphan, A. Yoshigoe, Y. Teraoka, and T. Shimura, Appl. Phys. Lett. 99, 021907 (2011).
http://dx.doi.org/10.1063/1.3610487
38.
38.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
39.B. Delley, J. Chem. Phys. 113, 7756 (2000).
http://dx.doi.org/10.1063/1.1316015
40.
40.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
41.
41.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
42.
42.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
43.
43.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
44.
44.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
45.
45.J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
46.
46.A. Pasquarello, M. S. Hybertsen, and R. Car, Phys. Rev. B 53, 10942 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.10942
47.
47.L. Köhler and G. Kresse, Phys. Rev. B 70, 165405 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.165405
48.
48.A. Pasquarello, M. S. Hybertsen, and R. Car, Phys. Rev. Lett. 74, 1024 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1024
49.
49.A. Pasquarello, M. S. Hybertsen, and R. Car, Nature (London) 58, 396 (1998).
50.
50.C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.253
51.
51.C. G. Van de Walle and R. M. Martin, Phys. Rev. B 35, 8154 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.8154
52.
52.D. West, Y. Y. Sun, and S. B. Zhang, Appl. Phys. Lett. 101, 082105 (2012).
http://dx.doi.org/10.1063/1.4745779
53.
53.A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. Lett. 101, 046405 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.046405
54.
54.A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Status Solidi B 248, 775 (2011).
http://dx.doi.org/10.1002/pssb.201046195
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4906257
Loading
/content/aip/journal/adva/5/1/10.1063/1.4906257
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4906257
2015-01-15
2016-09-28

Abstract

Using first-principles methods, we generate an amorphous SiO/4H-SiC interface with a transition layer. Based this interface model, we investigate the structural and electronic properties of the interfacial transition layer. The calculated Si 2 core-level shifts for this interface are comparable to the experimental data, indicating that various SiC O species should be present in this interface transition layer. The analysis of the electronic structures reveals that the tetrahedral SiC O structures cannot introduce any of the defect states at the interface. Interestingly, our transition layer also includes a C-C=C trimer and SiO configurations, which lead to the generation of interface states. The accurate positions of Kohn-Sham energy levels associated with these defects are further calculated within the hybrid functional scheme. The Kohn-Sham energy levels of the carbon trimer and SiO configurations are located near the conduction and valence band of bulk 4H-SiC, respectively. The result indicates that the carbon trimer occurred in the transition layer may be a possible origin of near interface traps. These findings provide novel insight into the structural and electronic properties of the realistic SiO/SiC interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4906257.html;jsessionid=frlVK4Yzdd5jb-b7GdzR6Z3k.x-aip-live-03?itemId=/content/aip/journal/adva/5/1/10.1063/1.4906257&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4906257&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4906257'
Right1,Right2,Right3,