Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4906514
1.
1.V. G. Veselago, Sov. Phys. USPEKHI 10, 509 (1968).
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
2.
2.Z. Li, K. Aydin, and E. Ozbay, Phys. Rev. E 79, 026610 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.026610
3.
3.J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4773
4.
4.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys.: Condens. Matter. 10, 4785 (1998).
http://dx.doi.org/10.1088/0953-8984/10/22/007
5.
5.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).
http://dx.doi.org/10.1109/22.798002
6.
6.D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195104
7.
7.M. Notomi, Phys. Rev. B 62, 10696 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10696
8.
8.D. R. Smith, D. C. Vier, T. Koschhy, and C. M. Soukoulis, Phys. Rev. E 71, 036617 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036617
9.
9.R. Marques, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 14440 (2002).
10.
10.G. Lubkowski, R. Schuhmann, and T. Weiland, Microw. Opt. Technol. Lett. 49, 285 (2007).
http://dx.doi.org/10.1002/mop.22105
11.
11.U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, Prog. Electromag. Res. 132, 425 (2012).
http://dx.doi.org/10.2528/PIER12072412
12.
12.A. Alu, Phys. Rev. B 84, 075153 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075153
13.
13.T. M. Grzegorczyk, X. Chen, J. Pacheco, Jr., J. Chen, B. -I. Wu, and J. A. Kong, Prog. Electromag. Res. 51, 83 (2005).
http://dx.doi.org/10.2528/PIER04040901
14.
14.X. Chen, T. M. Grzegorczyk, and J. A. Kong, Prog. Electromagn. Res. 60, 1 (2006).
http://dx.doi.org/10.2528/PIER05120601
15.
15.N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
http://dx.doi.org/10.1063/1.1695439
16.
16.U. C. Hasar, M. Bute, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, J. Opt. Soc. Am. B 31, 939 (2014).
http://dx.doi.org/10.1364/JOSAB.31.000939
17.
17.Z. -G. Dong, S. -Y. Lei, Q. Li, M. -X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, Phys. Rev. B 75, 075117 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.075117
18.
18.X. Chen, B. -I. Wu, J. A. Kong, and T. M. Grzegorczyk, Phys. Rev. E 71, 046610 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.046610
19.
19.A. V. Kildishev, J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, Proc. IEEE 99, 1691 (2011).
http://dx.doi.org/10.1109/JPROC.2011.2160991
20.
20.Z. Li, K. Aydin, and E. Ozbay, Photon. Nanostruct. Fundam. Appl. 10, 329 (2012).
http://dx.doi.org/10.1016/j.photonics.2011.11.002
21.
21.L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, Prog. Electromagn. Res. M 29, 79 (2013).
http://dx.doi.org/10.2528/PIERM13010204
22.
22.U. C. Hasar and J. J. Barroso, Prog. Electromagn. Res. 112, 109 (2011).
http://dx.doi.org/10.2528/PIER10112303
23.
23.U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, J. Opt. Soc. Am. B 30, 1058 (2013).
http://dx.doi.org/10.1364/JOSAB.30.001058
24.
24.S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, IEEE Antennas Propag. Mag. 55, 91 (2013).
http://dx.doi.org/10.1109/MAP.2013.6529320
25.
25.U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, Rev. Sci. Instrum. 85, 014705 (2014).
http://dx.doi.org/10.1063/1.4862047
26.
26.K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, IEEE Trans. Microw. Theory Tech. 57, 2257 (2009).
http://dx.doi.org/10.1109/TMTT.2009.2027160
27.
27.U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, Prog. Electromagn. Res. 132, 425 (2012).
http://dx.doi.org/10.2528/PIER12072412
28.
28.U. C. Hasar, G. Buldu, M. Bute, J. J. Barroso, T. Karacali, and M. Ertugrul, AIP Advances 2014 (accepted for publication).
29.
29.X. Chen, T. M. Grzegorczyk, B. -I. Wu, J. Pacheco, Jr., and J. A. Kong, Phys. Rev. B 70, 016608 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.016608
30.
30.C. R. Simovski and S. He, Phys. Lett. 311, 254 (2003).
http://dx.doi.org/10.1016/S0375-9601(03)00494-8
31.
31.L. B. M. Silva and E. J. P. Santos, Meas. 53, 128 (2014).
http://dx.doi.org/10.1016/j.measurement.2014.03.038
32.
32.U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, Opt. Express 20, 29002 (2012).
http://dx.doi.org/10.1364/OE.20.029002
33.
33.U. C. Hasar, Meas. Sci. Technol. 19, 055706 (2008).
http://dx.doi.org/10.1088/0957-0233/19/5/055706
34.
34.S. Xia, Z. Xu, and X. Wei, Rev. Sci. Instrum. 80, 114 (2009).
35.
35.Y. Huang and M. Nakhkash, Electron. Lett. 34, 1207 (1998).
http://dx.doi.org/10.1049/el:19980862
36.
36.S. Wang, M. Niu, and D. Xu, IEEE Trans. Microw. Theory Tech. 46, 2145 (1998).
http://dx.doi.org/10.1109/22.739296
37.
37.Z. X. Cao, F. G. Yuan, and L. H. Li, AIP Advances 4, 067115 (2014).
http://dx.doi.org/10.1063/1.4882155
38.
38.J. J. Barroso and U. C. Hasar, J. Infrared Milli. Terahertz Waves 33, 237 (2012).
http://dx.doi.org/10.1007/s10762-011-9869-3
39.
39.V. V. Varadan and R. Ro, IEEE Trans. Microw. Theory Tech. 55, 2224 (2007).
http://dx.doi.org/10.1109/TMTT.2007.906473
40.
40.Z. Szabo, G. -H. Park, R. Hedge, and E. -P. Li, IEEE Trans. Microw. Theory Tech. 58, 2646 (2010).
http://dx.doi.org/10.1109/TMTT.2010.2065310
41.
41.P. Alitalo, A. C. Culhaoglu, C. R. Simovski, and S. A. Tretyakov, J. Appl. Phys. 113, 224903 (2013).
http://dx.doi.org/10.1063/1.4809563
42.
42.R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, Opt. Express 16, 18131 (2008).
http://dx.doi.org/10.1364/OE.16.018131
43.
43.D. R. Chowdhury, A. K. Azad, W. Zhang, and R. Singh, IEEE Trans. THz Sci. Technol. 3, 783 (2013).
http://dx.doi.org/10.1109/TTHZ.2013.2285569
44.
44.J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 80, 035109 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035109
45.
45.S. Kim, E. F. Kuester, C. L. Holloway, A. D. Scher, and J. Baker-Jarvis, IEEE Trans. Antennas Propag. 59, 2226 (2011).
http://dx.doi.org/10.1109/TAP.2011.2143679
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4906514
Loading
/content/aip/journal/adva/5/1/10.1063/1.4906514
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4906514
2015-01-21
2016-12-04

Abstract

We propose a retrieval method for reference-plane-invariant electromagnetic parameter measurements of bi-anisotropic metamaterial slabs without resorting to accurate information of the slab thickness and the branch index. To extract reference-plane distances, the slab thickness, and the branch index, we first approximate wave impedances and refractive index away from the slab resonance frequency and then use scattering parameters to calculate the refractive index and the branch index. Once these quantities are determined, they are used as inputs for the retrieval of electromagnetic properties of slabs over the whole band. Different approximations for refractive index and wave impedances are applied to demonstrate the applicability and accuracy of our proposed method. We tested our method for electromagnetic parameter extraction of bi-anisotropic split-ring-resonator and Omega-shaped MM slabs with different number of unit cells. From our analysis, we note that inaccurate information of reference-plane distances, the slab length, and the branch index not only changes the amplitude but also shifts the response of the electromagnetic properties. We show that the presented method can be applied for accurate electromagnetic parameter extraction of bi-anisotropic MM slabs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4906514.html;jsessionid=5bWWQ_sOYvQmBImgE4ejdFWP.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4906514&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4906514&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4906514'
Right1,Right2,Right3,