Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4906521
1.
1.C. Flytzanis, Quantum electronics: A treatise, Nonlinear Optics, Part A edited by H. Rabin and C. L. Tang (Academic Press, New York, 1975).
2.
2.P. N. Butcher and D. Cotter, The elements of nonlinear optics (Cambridge University Press, 1990).
3.
3.Y. R. Shen, The principle of nonlinear optics (John Wiely & Sons Inc, New York, 1984).
4.
4.R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, New York, 2008).
5.
5.M. G. Kuzyk and C. Poga, “Quadratic electro-optics of guest-host polymers,” in Molecular nonlinear optics: Materials, physics, and devices, edited by J. Zyss (Academic Press, New York, 1994), Ch. 7.
6.
6.R. L. Sutherland, Handbook of nonlinear optics (Marcel Dekker, Inc, New York, 1996).
7.
7.D. M. Bishop, Rev. Mod. Phys. 62, 343 (1990) and references therein.
http://dx.doi.org/10.1103/RevModPhys.62.343
8.
8.D. P. Shelton and J. E. Rice, Chem. Rev. 94, 3 (1994) and references therein.
http://dx.doi.org/10.1021/cr00025a001
9.
9.A. D. Buckingham and J. A. Pople, Proc. Phys. Soc.A 68, 905 (1955).
http://dx.doi.org/10.1088/0370-1298/68/10/307
10.
10.A. D. Buckingham, Proc. Phys. Soc. B 69, 344 (1956).
http://dx.doi.org/10.1088/0370-1301/69/3/309
11.
11.A. D. Buckingham, J. Chem. Phys. 25, 428 (1956).
http://dx.doi.org/10.1063/1.1742940
12.
12.B. K. Kielich and S. Kielich, Acta Phys. Pol.A 50, 215 (1976).
13.
13.A. D. Buckingham and B. J. Orr, Q. Rev. Chem. Soc. 21, 195 (1967).
http://dx.doi.org/10.1039/qr9672100195
14.
14.A. D. Buckingham, M. P. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, Trans. Faraday Soc. 66, 1548 (1970).
http://dx.doi.org/10.1039/tf9706601548
15.
15.D. S. Chemla and R. Bonneville, J. Chem. Phys. 68, 2214 (1978).
http://dx.doi.org/10.1063/1.436045
16.
16.D. P. Shelton, Phys. Rev. A 36, 3461 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.3461
17.
17.D. N. Hocomb and I. Tinoco, Jr., J. Phys. Chem. 67, 2691 (1963).
http://dx.doi.org/10.1021/j100806a044
18.
18.K. Yoshioka, J. Chem. Phys. 86, 491 (1987).
http://dx.doi.org/10.1063/1.452588
19.
19.A. K. Burnham, L. W. Buxton, and W. H. Flygare, J. Chem. Phys. 67, 4990 (1977).
http://dx.doi.org/10.1063/1.434720
20.
20.M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, J. Opt. Soc. Am. B 7, 842 (1990).
http://dx.doi.org/10.1364/JOSAB.7.000842
21.
21.S. Kielich, Acta Phys. Pol. 30, 683 (1966).
22.
22.S. Kielich, Proc. Phys. Soc. 90, 847 (1967).
http://dx.doi.org/10.1088/0370-1328/90/3/330
23.
23.S. Kielich, Physica 34, 365 (1967).
http://dx.doi.org/10.1016/0031-8914(67)90004-3
24.
24.S. Kielich, IEEE J. Quantum Electron. 4, 744 (1968).
http://dx.doi.org/10.1109/JQE.1968.1074961
25.
25.K. Sala and M. C. Richardson, Phys. Rev. A 12, 1036 (1975).
http://dx.doi.org/10.1103/PhysRevA.12.1036
26.
26.R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev. Lett. 8, 404 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.404
27.
27. G. Mayer, C. R. Acad. Sci. B 267, 54 (1968);
27. G. Hauchecorne, F. Kerherve, and G. Mayer, J. Phys. (Paris) 32, 47 (1971).
http://dx.doi.org/10.1051/jphys:0197100320104700
28.
28.S. Kielich, IEEE J. Quantum Electron. 5, 562-568 (1969).
http://dx.doi.org/10.1109/JQE.1969.1075702
29.
29.S. Kielich, Optoelectronics 2, 5 (1970).
30.
30. R. S. Finn and J. F. Ward, Phys. Rev. Lett. 26, 285 (1971);
http://dx.doi.org/10.1103/PhysRevLett.26.285
30. R. S. Finn and J. F. Ward, J. Chem. Phys. 60, 454 (1974).
http://dx.doi.org/10.1063/1.1681062
31.
31.J. F. Ward and I. J. Bigio, Phys. Rev. A 11, 60 (1975).
http://dx.doi.org/10.1103/PhysRevA.11.60
32.
32.B. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).
http://dx.doi.org/10.1063/1.431660
33.
33.B. F. Levine and C. G. Bethea, J. Chem. Phys. 65, 2429 (1976).
http://dx.doi.org/10.1063/1.433359
34.
34.J. L. Oudar, J. Chem. Phys. 67, 446 (1977).
http://dx.doi.org/10.1063/1.434888
35.
35.D. M. Burland, C. A. Walsh, F. Kajzar, and C. Sentein, J. Opt. Soc. Am. B 8, 2269 (1991).
http://dx.doi.org/10.1364/JOSAB.8.002269
36.
36.A. Wiletts, J. E. Rice, D. M. Burland, and D. P. Shelton, J. Chem. Phys. 97, 7590 (1992).
http://dx.doi.org/10.1063/1.463479
37.
37.H. Reis, J. Chem. Phys. 125, 014506 (2006).
http://dx.doi.org/10.1063/1.2211611
38.
38.K. D. Singer and A. F. Garito, J. Chem. Phys. 75, 3572 (1981).
http://dx.doi.org/10.1063/1.442467
39.
39.F. Kajzar, I. Ledoux, and J. Zyss, Phys. Rev. A 36, 2210 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.2210
40.
40.S. K. Saha and G. K. Wong, Appl. Phys. Lett. 34, 423 (1979).
http://dx.doi.org/10.1063/1.90821
41.
41.D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, and W. G. Wagner, IEEE J. Quantum Electron. 2, 553 (1966).
http://dx.doi.org/10.1109/JQE.1966.1074077
42.
42.A. D. Buckingham and P. Fischer, Chem. Phys. Lett. 297, 239 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01144-0
43.
43.J. Jerphagnon, Phys. Rev. B 2, 1091 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.1091
44.
44.A. D. Buckingham and H. Sutter, J. Chem. Phys. 64, 364 (1976).
http://dx.doi.org/10.1063/1.431931
45.
45.I. R. Gentle, D. R. Laver, and G. L. D. Ritchie, J. Phys. Chem. 94, 3434 (1990).
http://dx.doi.org/10.1021/j100372a016
46.
46.J. W. Dudley II and J. F. Ward, J. Chem. Phys. 82, 4673 (1985).
http://dx.doi.org/10.1063/1.448726
47.
47.P. Debye, Polar molecules (Chemical Catalog Company, New York, 1929), Ch. 5.
48.
48.R. Bonneville and D. S. Chemla, Phys. Rev. A 17, 2046 (1978).
http://dx.doi.org/10.1103/PhysRevA.17.2046
49.
49.J. Jerphagnon, D. Chemla, and R. Bonneville, Adv. Phys. 27, 609 (1978).
http://dx.doi.org/10.1080/00018737800101454
50.
50.J. F. Ward and G. H. C. New, Phys. Rev. 185, 57 (1969).
http://dx.doi.org/10.1103/PhysRev.185.57
51.
51.P. S. Pershan, Phys. Rev. 130, 919 (1963).
http://dx.doi.org/10.1103/PhysRev.130.919
52.
52.N. Bloembergen, Nonlinear optics, 4th ed. (World Scientific, 1996).
53.
53.J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
http://dx.doi.org/10.1103/PhysRev.127.1918
54.
54.R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
http://dx.doi.org/10.1063/1.1754022
55.
55. L. R. Dalton, A. W. Harper, and B. H. Robinson, Proc. Natl. Acad. Sci. USA 94, 4842 (1997);
http://dx.doi.org/10.1073/pnas.94.10.4842
55. L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, Ind. Eng. Chem. Res. 38, 8 (1999).
http://dx.doi.org/10.1021/ie9705970
56.
56.K. D. Singer, M. G. Kuzyk, and J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987).
http://dx.doi.org/10.1364/JOSAB.4.000968
57.
57.P. O. de Gennes and J. Prost, The physics of liquid crystals (Clarendon Press, Oxford, 1993).
58.
58.E. A. Power and T. Thirunamachandran, J. Chem. Phys. 60, 3695 (1974).
http://dx.doi.org/10.1063/1.1681591
59.
59.W. P. Healy, J. Phys. B 7, 1633 (1974).
http://dx.doi.org/10.1088/0022-3700/7/13/009
60.
60.D. L. Andrews and T. Thirunamachandran, J. Chem. Phys. 67, 5026 (1977).
http://dx.doi.org/10.1063/1.434725
61.
61.M. F. Vuks, Opt. Specktrosk. 20, 644 (1966).
62.
62.G. Y. Kim and C. H. Kwak, Opt. Comm. 284, 5257 (2011).
63.
63.J. A. Giordmaine, Phys. Rev. 138, A1599 (1965).
http://dx.doi.org/10.1103/PhysRev.138.A1599
64.
64.P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, Phys. Rev. Lett. 16, 792 (1966).
http://dx.doi.org/10.1103/PhysRevLett.16.792
65.
65.D. Kleinman, Phys. Rev. 126, 1977 (1962).
http://dx.doi.org/10.1103/PhysRev.126.1977
66.
66.P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
http://dx.doi.org/10.1103/RevModPhys.35.23
67.
67.B. M. Pierce, J. Chem. Phys. 91, 791 (1989).
http://dx.doi.org/10.1063/1.457132
68.
68.K. Y. Wong and A. F. Garito, Phys. Rev. A 34, 5051 (1986).
http://dx.doi.org/10.1103/PhysRevA.34.5051
69.
69.G. R. Meredith, B. Buchalter, and C. Hanzlik, J. Chem. Phys. 78, 1533 (1983).
http://dx.doi.org/10.1063/1.444844
70.
70.C. C. Wang, Phys. Rev. 152, 149 (1966).
http://dx.doi.org/10.1103/PhysRev.152.149
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4906521
Loading
/content/aip/journal/adva/5/1/10.1063/1.4906521
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4906521
2015-01-21
2016-12-04

Abstract

Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A , 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4906521.html;jsessionid=y7Xey9O_1uuS33AYwA97A8jV.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4906521&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4906521&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4906521'
Right1,Right2,Right3,