Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Guéron, H. Pothier, N. O. Birge, D. Esteve, and M. H. Devoret, “Superconducting proximity effect probed on a mesoscopic length scale,” Phys. Rev. Lett. 77, 30253028 (1996).
2.N. Moussy, H. Courtois, and B. Pannetier, “Local spectroscopy of a proximity superconductor at very low temperature,” Europhys. Lett. 55, 861 (2001).
3.W. Escoffier, C. Chapelier, N. Hadacek, and J.-C. Villégier, “Anomalous proximity effect in an inhomogeneous disordered superconductor,” Phys. Rev. Lett. 93, 217005 (2004).
4.H. le Sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve, “Phase controlled superconducting proximity effect probed by tunneling spectroscopy,” Phys. Rev. Lett. 100, 197002 (2008).
5.M. Wolz, C. Debuschewitz, W. Belzig, and E. Scheer, “Evidence for attractive pair interaction in diffusive gold films deduced from studies of the superconducting proximity effect with aluminum,” Phys. Rev. B 84, 104516 (2011).
6.J. Kim, V. Chua, G. A. Fiete, H. Nam, A. H. MacDonald, and C.-K. Shih, “Visualization of geometric influences on proximity effects in heterogeneous superconductor thin films,” Nat. Phys. 8, 464469 (2012).
7.L. Serrier-Garcia, J. C. Cuevas, T. Cren, C. Brun, V. Cherkez, F. Debontridder, D. Fokin, F. S. Bergeret, and D. Roditchev, “Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal,” Phys. Rev. Lett. 110, 157003 (2013).
8.V. Cherkez, J. Cuevas, C. Brun, T. Cren, G. Menard, F. Debontridder, V. Stolyarov, and D. Roditchev, “Proximity effect between two superconductors spatially resolved by scanning tunneling spectroscopy,” Phys. Rev. X 4, 011033 (2014).
9.M. Caminale, A. A. Leon Vanegas, A. Stępniak, H. Oka, D. Sander, and J. Kirschner, “Threshold of magnetic field response of the superconducting proximity effect for ultrathin pb/ag metallic film,” Phys. Rev. B 90, 220507.
10.P. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin Inc., New York, 1966).
11.K. D. Usadel, “Generalized diffusion equation for superconducting alloys,” Phys. Rev. Lett. 25, 507509 (1970).
12.W. Buckel and R. Kleiner, Superconductivity Fundamentals and applications (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2004).
13.G. Deutscher and P. de Gennes, in Superconductivity, edited by R. Parks (Marcel Dekker Inc., New York, 1996).
14.P. G. De Gennes, “Boundary effects in superconductors,” Rev. Mod. Phys. 36, 225237 (1964).
15.A. Stępniak, A. Leon Vanegas, M. Caminale, H. Oka, D. Sander, and J. Kirschner, “Atomic layer superconductivity,” Surface and Interface Analysis 46, 1262 (2014).
16.J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 11751204 (1957).
17.R. C. Dynes, V. Narayanamurti, and J. P. Garno, “Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor,” Phys. Rev. Lett. 41, 15091512 (1978).
18.C. Brun, I.-P. Hong, F. m. c. Patthey, I. Y. Sklyadneva, R. Heid, P. M. Echenique, K. P. Bohnen, E. V. Chulkov, and W.-D. Schneider, “Reduction of the superconducting gap of ultrathin pb islands grown on si(111),” Phys. Rev. Lett. 102, 207002 (2009).
19.M. Hupalo and M. C. Tringides, “Ultrafast kinetics in from the collective spreading of the wetting layer,” Phys. Rev. B 75, 235443 (2007).
20.T. Nishio, T. An, A. Nomura, K. Miyachi, T. Eguchi, H. Sakata, S. Lin, N. Hayashi, N. Nakai, M. Machida, and Y. Hasegawa, “Superconducting pb island nanostructures studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. Lett. 101, 167001 (2008).
21.T. Cren, D. Fokin, and F. m. Debontridder, “Ultimate vortex confinement studied by scanning tunneling spectroscopy,” Phys. Rev. Lett. 102, 127005 (2009).
22.I. Giaever, “Electron tunneling between two superconductors,” Phys. Rev. Lett. 5, 464466 (1960).
23.J. Wang, C. Shi, M. Tian, Q. Zhang, N. Kumar, J. Jain, T. Mallouk, and M. Chan, “Proximity-induced superconductivity in nanowires: Minigap state and differential magnetoresistance oscillations,” Phys. Rev. Lett. 102, 247003 (2009).
24.M. Vinet, C. Chapelier, and F. Lefloch, “Spatially resolved spectroscopy on superconducting proximity nanostructures,” Phys. Rev. B 63, 165420 (2001).
25.M. Tinkham, Introduction to superconductivity (McGraw-Hill, Inc., New York, 1996).
26.R. Wiesendanger, Scanning probe microscopy and spectroscopy. Methods and applications (Cambridge University Press, Cambridge, 1994).
27.W. Belzig, C. Bruder, and G. Schön, “Local density of states in a dirty normal metal connected to a superconductor,” Phys. Rev. B 54, 94439448 (1996).
28.W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikind, “Quasiclassical greenŠs function approach to mesoscopic superconductivity,” Superlattices and Microstructures 25, 1251 (1999).
29.O. Pfennigstorf, A. Petkova, H. L. Guenter, and M. Henzler, “Conduction mechanism in ultrathin metallic films,” Phys. Rev. B 65, 045412 (2002).
30.S. Levitov and A. V. Shytov, “Semiclassical theory of the coulomb anomaly,” JEPT 66, 214 (1997).
31.J. Kim, G. A. Fiete, H. Nam, A. H. MacDonald, and C.-K. Shih, “Universal quenching of the superconducting state of two-dimensional nanosize pb-island structures,” Phys. Rev. B 84, 014517 (2011).

Data & Media loading...


Article metrics loading...



Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS) measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd