Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4906554
1.
1.S. Guéron, H. Pothier, N. O. Birge, D. Esteve, and M. H. Devoret, “Superconducting proximity effect probed on a mesoscopic length scale,” Phys. Rev. Lett. 77, 30253028 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3025
2.
2.N. Moussy, H. Courtois, and B. Pannetier, “Local spectroscopy of a proximity superconductor at very low temperature,” Europhys. Lett. 55, 861 (2001).
http://dx.doi.org/10.1209/epl/i2001-00361-2
3.
3.W. Escoffier, C. Chapelier, N. Hadacek, and J.-C. Villégier, “Anomalous proximity effect in an inhomogeneous disordered superconductor,” Phys. Rev. Lett. 93, 217005 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.217005
4.
4.H. le Sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve, “Phase controlled superconducting proximity effect probed by tunneling spectroscopy,” Phys. Rev. Lett. 100, 197002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.197002
5.
5.M. Wolz, C. Debuschewitz, W. Belzig, and E. Scheer, “Evidence for attractive pair interaction in diffusive gold films deduced from studies of the superconducting proximity effect with aluminum,” Phys. Rev. B 84, 104516 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104516
6.
6.J. Kim, V. Chua, G. A. Fiete, H. Nam, A. H. MacDonald, and C.-K. Shih, “Visualization of geometric influences on proximity effects in heterogeneous superconductor thin films,” Nat. Phys. 8, 464469 (2012).
7.
7.L. Serrier-Garcia, J. C. Cuevas, T. Cren, C. Brun, V. Cherkez, F. Debontridder, D. Fokin, F. S. Bergeret, and D. Roditchev, “Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal,” Phys. Rev. Lett. 110, 157003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.157003
8.
8.V. Cherkez, J. Cuevas, C. Brun, T. Cren, G. Menard, F. Debontridder, V. Stolyarov, and D. Roditchev, “Proximity effect between two superconductors spatially resolved by scanning tunneling spectroscopy,” Phys. Rev. X 4, 011033 (2014).
9.
9.M. Caminale, A. A. Leon Vanegas, A. Stępniak, H. Oka, D. Sander, and J. Kirschner, “Threshold of magnetic field response of the superconducting proximity effect for ultrathin pb/ag metallic film,” Phys. Rev. B 90, 220507.
http://dx.doi.org/10.1103/PhysRevB.90.220507
10.
10.P. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin Inc., New York, 1966).
11.
11.K. D. Usadel, “Generalized diffusion equation for superconducting alloys,” Phys. Rev. Lett. 25, 507509 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.507
12.
12.W. Buckel and R. Kleiner, Superconductivity Fundamentals and applications (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2004).
13.
13.G. Deutscher and P. de Gennes, in Superconductivity, edited by R. Parks (Marcel Dekker Inc., New York, 1996).
14.
14.P. G. De Gennes, “Boundary effects in superconductors,” Rev. Mod. Phys. 36, 225237 (1964).
http://dx.doi.org/10.1103/RevModPhys.36.225
15.
15.A. Stępniak, A. Leon Vanegas, M. Caminale, H. Oka, D. Sander, and J. Kirschner, “Atomic layer superconductivity,” Surface and Interface Analysis 46, 1262 (2014).
http://dx.doi.org/10.1002/sia.5516
16.
16.J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 11751204 (1957).
http://dx.doi.org/10.1103/PhysRev.108.1175
17.
17.R. C. Dynes, V. Narayanamurti, and J. P. Garno, “Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor,” Phys. Rev. Lett. 41, 15091512 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.1509
18.
18.C. Brun, I.-P. Hong, F. m. c. Patthey, I. Y. Sklyadneva, R. Heid, P. M. Echenique, K. P. Bohnen, E. V. Chulkov, and W.-D. Schneider, “Reduction of the superconducting gap of ultrathin pb islands grown on si(111),” Phys. Rev. Lett. 102, 207002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.207002
19.
19.M. Hupalo and M. C. Tringides, “Ultrafast kinetics in from the collective spreading of the wetting layer,” Phys. Rev. B 75, 235443 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235443
20.
20.T. Nishio, T. An, A. Nomura, K. Miyachi, T. Eguchi, H. Sakata, S. Lin, N. Hayashi, N. Nakai, M. Machida, and Y. Hasegawa, “Superconducting pb island nanostructures studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. Lett. 101, 167001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.167001
21.
21.T. Cren, D. Fokin, and F. m. Debontridder, “Ultimate vortex confinement studied by scanning tunneling spectroscopy,” Phys. Rev. Lett. 102, 127005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.127005
22.
22.I. Giaever, “Electron tunneling between two superconductors,” Phys. Rev. Lett. 5, 464466 (1960).
http://dx.doi.org/10.1103/PhysRevLett.5.464
23.
23.J. Wang, C. Shi, M. Tian, Q. Zhang, N. Kumar, J. Jain, T. Mallouk, and M. Chan, “Proximity-induced superconductivity in nanowires: Minigap state and differential magnetoresistance oscillations,” Phys. Rev. Lett. 102, 247003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.247003
24.
24.M. Vinet, C. Chapelier, and F. Lefloch, “Spatially resolved spectroscopy on superconducting proximity nanostructures,” Phys. Rev. B 63, 165420 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.165420
25.
25.M. Tinkham, Introduction to superconductivity (McGraw-Hill, Inc., New York, 1996).
26.
26.R. Wiesendanger, Scanning probe microscopy and spectroscopy. Methods and applications (Cambridge University Press, Cambridge, 1994).
27.
27.W. Belzig, C. Bruder, and G. Schön, “Local density of states in a dirty normal metal connected to a superconductor,” Phys. Rev. B 54, 94439448 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9443
28.
28.W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikind, “Quasiclassical greenŠs function approach to mesoscopic superconductivity,” Superlattices and Microstructures 25, 1251 (1999).
http://dx.doi.org/10.1006/spmi.1999.0710
29.
29.O. Pfennigstorf, A. Petkova, H. L. Guenter, and M. Henzler, “Conduction mechanism in ultrathin metallic films,” Phys. Rev. B 65, 045412 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.045412
30.
30.S. Levitov and A. V. Shytov, “Semiclassical theory of the coulomb anomaly,” JEPT 66, 214 (1997).
31.
31.J. Kim, G. A. Fiete, H. Nam, A. H. MacDonald, and C.-K. Shih, “Universal quenching of the superconducting state of two-dimensional nanosize pb-island structures,” Phys. Rev. B 84, 014517 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014517
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4906554
Loading
/content/aip/journal/adva/5/1/10.1063/1.4906554
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4906554
2015-01-21
2016-12-09

Abstract

Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS) measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4906554.html;jsessionid=IJx-hVqkz8uWjF8XGngxSKJe.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4906554&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4906554&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4906554'
Right1,Right2,Right3,