Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4906569
1.
1.S. Nakamura, Science 281, 956961 (1998).
http://dx.doi.org/10.1126/science.281.5379.956
2.
2.M. H. Crawford, IEEE J. Sel. Top. Quantum Electron. 15, 1028-1040 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2013476
3.
3.H. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, Optics Express 19, A991-A1007 (2011).
http://dx.doi.org/10.1364/OE.19.00A991
4.
4.H. Zhao, G. Liu, R. A. Arif, and N. Tansu, Solid-State Electronics 54, 11191124 (2010).
http://dx.doi.org/10.1016/j.sse.2010.05.019
5.
5.X. Li, S. Kim, E. E. Reuter, S. G. Bishop, and J. J. Coleman, Appl. Phys. Lett. 72, 1990-1992 (1998).
http://dx.doi.org/10.1063/1.121242
6.
6.X. Li, S. G. Bishop, and J. J. Coleman, Appl. Phys. Lett. 73, 11791181 (1998).
http://dx.doi.org/10.1063/1.122121
7.
7.X. Li, H. Liu, X. Ni, U. Ozgur, and H. Morkoc, Superlattices and Microstructures 47, 118-122 (2010).
http://dx.doi.org/10.1016/j.spmi.2009.07.022
8.
8.X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, IEEE Photon. J. 3, 489499 (2011).
http://dx.doi.org/10.1109/JPHOT.2011.2150745
9.
9.I. H. Brown, P. Blood, P. M. Smowton, J. D. Thomson, S. M. Olaizola, A. M. Fox, P. J. Parbrook, and W. W. Chow, IEEE J. Quantum Electron. 42, 12021208 (2006).
http://dx.doi.org/10.1109/JQE.2006.883472
10.
10.H. Zhang, E. J. Miller, E. T. Yu, C. Poblez, and J. S. Speck, Appl. Phys. Lett. 84, 4644-4646 (2004).
http://dx.doi.org/10.1063/1.1759388
11.
11.P. K. York, K. J. Beernink, G. E. Fernandez, and J. J. Coleman, Appl. Phys. Lett. 54, 499-501 (1989).
http://dx.doi.org/10.1063/1.100935
12.
12.N. Tansu, J. Y. Yeh, and L. J. Mawst, Appl. Phys. Lett. 82, 4038-4040 (2003).
http://dx.doi.org/10.1063/1.1581978
13.
13.K. Uesugi, N. Morooka, and I. Suemune, Appl. Phys. Lett. 74, 1254-1256 (1999).
http://dx.doi.org/10.1063/1.123516
14.
14.L. Xu, D. Patel, C. S. Menoni, J. Y. Yeh, L. J. Mawst, and N. Tansu, Appl. Phys. Lett. 89, 171112 (2006).
http://dx.doi.org/10.1063/1.2364068
15.
15.H.-P. Komsa, E. Arola, E. Larkins, and T. T. Rantala, J. Phys.:Condens. Matter 20, 315004 (2008).
16.
16.N. Tansu, J. Y. Yeh, and L. J. Mawst, IEEE J. Sel. Top. Quantum Electron. 9, 1220-1227 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.820911
17.
17.S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, IEEE J. Sel. Top. Quantum Electron. 11, 1089-1098 (2005).
http://dx.doi.org/10.1109/JSTQE.2005.853852
18.
18.A. Lindsay and E. P. O’Reilly, Phys. Rev. Lett. 93, 196402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.196402
19.
19.C. G. Van de Walle and J. Neugebauer, Appl. Phys. Lett. 76, 10091011 (2000).
http://dx.doi.org/10.1063/1.125922
20.
20.A. Kimura, C. A. Paulson, H. F. Tang, and T. F. Kuech, Appl. Phys. Lett. 84, 1489-1491 (2004).
http://dx.doi.org/10.1063/1.1652232
21.
21.K. M. Yu, S. V. Novikov, R. Broesler, C. R. Staddon, M. Hawkridge, Z. Liliental-Weber, I. Demchenko, J. D. Denlinger, V. M. Kao, F. Luckert, R. W. Martin, W. Walukiewicz, and C. T. Foxon, Phys. Status Solidi C 7, 18471849 (2010).
http://dx.doi.org/10.1002/pssc.200983430
22.
22.C. K. Tan, B. O. Tayo, J. Zhang, X. H. Li, G. Y. Liu, and N. Tansu, J. Disp. Technol. 9, 272-279 (2013).
http://dx.doi.org/10.1109/JDT.2013.2248342
23.
23.X. H. Li, H. Tong, H. P. Zhao, and N. Tansu, Proc. of the SPIE Photonics West 2010, Physics & Simulation of Optoelectronics Devices XVIII, 75970H (2010).
24.
24.T. Mattila and A. Zunger, Phys. Rev. B 59, 9943-9953 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.9943
25.
25.K. Laaksonen, H.-P. Komsa, E. Arola, T. T. Rantala, and R. M. Nieminen, J. Phys.: Condens. Matter 18, 10097-10114 (2006).
26.
26.J. Wu, W. Walukiewicz, K. M. Yu, J. D. Denlinger, W. Shan, J. W. Ager III, A. Kimura, H. F. Tang, and T. F. Kuech, Phys. Rev. B 70, 115214 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115214
27.
27.R. A. Arif, H. Zhao, and N. Tansu, Appl. Phys. Lett. 92, 011104 (2008).
http://dx.doi.org/10.1063/1.2829600
28.
28.H. Zhao, R. A. Arif, and N. Tansu, J. Appl. Phys. 104, 043104 (2008).
http://dx.doi.org/10.1063/1.2970107
29.
29.M. Peressi, N. Binggeli, and A. Baldereschi, J. Phys. D: Apply. Phys. 31, 1273-1299 (1997).
http://dx.doi.org/10.1088/0022-3727/31/11/002
30.
30.A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61, 734-737 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.734
31.
31.L. Colombo, R. Resta, and S. Baroni, Phys. Rev. B 44, 5572-5579 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.5572
32.
32.N. R. D’Amico, G. Cantele, and D. Ninno, Appl. Phys. Lett. 101, 141606 (2012).
http://dx.doi.org/10.1063/1.4757281
33.
33.P. G. Moses, M. Miao, Q. Yan, and C. G. Van de Walle, J. Chem. Phys. 134, 084703 (2011).
http://dx.doi.org/10.1063/1.3548872
34.
34.P. G. Moses and C. G. Van de Walle, Appl. Phys. Lett. 96, 021908 (2010).
http://dx.doi.org/10.1063/1.3291055
35.
35.L. Dong and S. P. Alpay, J. Appl. Phys. 111, 113714 (2012).
http://dx.doi.org/10.1063/1.4729079
36.
36.S. H. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011-2013 (1998).
http://dx.doi.org/10.1063/1.121249
37.
37.J. Robertson, J. Vac. Sci. Technol. B 18, 1785-1791 (2000).
http://dx.doi.org/10.1116/1.591472
38.
38.B. Hoffling, A. Schleife, C. Rodl, and F. Bechstedt, Phys. Rev. B 85, 035305 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035305
39.
39.Material Designs Inc., Santa Fe, NM, USA, MedeA-VASP, http://www.materialsdesign.com.
40.
40.V. Fiorentini and A. Baldereschi, Phys. Rev. B 51, 11169-11186 (1996).
41.
41.P. W. Peacock and J. Robertson, Phys. Rev. Lett. 92, 057601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.057601
42.
42.I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675-3696 (2003).
http://dx.doi.org/10.1063/1.1600519
43.
43.D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. B 32, 1043-1060 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.1043
44.
44.H. P. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, IEEE J. Quantum Electron. 45(1-2), 66-78 (2009).
http://dx.doi.org/10.1109/JQE.2008.2004000
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4906569
Loading
/content/aip/journal/adva/5/1/10.1063/1.4906569
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4906569
2015-01-22
2016-12-03

Abstract

Density functional theory (DFT) calculations with the local density approximation (LDA) functional are employed to investigate the band alignment of dilute-As GaNAs alloys with respect to the GaN alloy. Conduction and valence band positions of dilute-As GaNAs alloy with respect to the GaN alloy on an absolute energy scale are determined from the combination of bulk and surface DFT calculations. The resulting GaN / GaNAs conduction to valence band offset ratio is found as approximately 5:95. Our theoretical finding is in good agreement with experimental observation, indicating the upward movements of valence band at low-As content dilute-As GaNAs are mainly responsible for the drastic reduction of the GaN energy band gap. In addition, type-I band alignment of GaN / GaNAs is suggested as a reasonable approach for future device implementation with dilute-As GaNAs quantum well, and possible type-II quantum well active region can be formed by using InGaN / dilute-As GaNAs heterostructure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4906569.html;jsessionid=olL4v_A9iCD6lB8liFvF9YSi.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4906569&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4906569&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4906569'
Right1,Right2,Right3,