Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4906792
1.
1. Z. Wang, P. B. Griffin, and J. McVittie, IEEE Electron Device Lett. 28, 14 (2007);
http://dx.doi.org/10.1109/LED.2006.887640
1. T. Sakamoto, H. Sunamura, and H. Kawaura, APPLIED PHYSICS LETTERS. 82, 3032 (2003).
http://dx.doi.org/10.1063/1.1572964
2.
2.Y C Yang, F Pan, and Q Liu, Nano Letter. 9, 1636 (2009).
http://dx.doi.org/10.1021/nl900006g
3.
3.Shang Da-Shan, Sun Ji-Rong, and Shen Bao-Gen, Chin. Phys. B. 22, 067202 (2013).
http://dx.doi.org/10.1088/1674-1056/22/6/067202
4.
4. Y Wang, Q Liu, and S Long, Nanotechnology. 21, 045202 (2010);
http://dx.doi.org/10.1088/0957-4484/21/4/045202
4. M Y Chan, T Zhang, and V Ho, Microelectronic Engineering. 85, 2420 (2008);
http://dx.doi.org/10.1016/j.mee.2008.09.021
4. K-L Lin, T-H Hou, and J Shieh, Journal of Applied Physics. 109, 084104 (2011).
http://dx.doi.org/10.1063/1.3567915
5.
5.K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi, APPLIED PHYSICS LETTERS. 90, 113501-1 (2007).
http://dx.doi.org/10.1063/1.2712777
6.
6.S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, APPLIED PHYSICS LETTERS. 85, 5655 (2004).
http://dx.doi.org/10.1063/1.1831560
7.
7.T. W. Hickmott, J. Appl. Phys. 33, 2669 (1962).
http://dx.doi.org/10.1063/1.1702530
8.
8.Y. Watanabe, J. G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck, and S. J. Wind, APPLIED PHYSICS LETTERS. 78, 3738 (2001).
http://dx.doi.org/10.1063/1.1377617
9.
9.A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, APPLIED PHYSICS LETTERS. 83, 957 (2003).
http://dx.doi.org/10.1063/1.1590741
10.
10.T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, APPLIED PHYSICS LETTERS. 82, 3032 (2003).
http://dx.doi.org/10.1063/1.1572964
11.
11.T. W. Hickmott, J. Appl. Phys. 35, 2118 (1964).
http://dx.doi.org/10.1063/1.1702801
12.
12.DC Kim, S Seo, SE Ahn, DS Suh, MJ Lee, BH Park, IK Yoo, IG Baek, HJ Kim, EK Yim, JE Lee, SO Park, HS Kim, UI Chung, JT Moon, and BI Ryu, APPLIED PHYSICS LETTERS. 88, 202102-1-3 (2006).
http://dx.doi.org/10.1063/1.2204649
13.
13.A Chen, S Haddad, YC Wu, Z Lan, TN Fang, and S Kaza, APPLIED PHYSICS LETTERS. 91, 123517-1-3 (2007).
http://dx.doi.org/10.1063/1.2789678
14.
14.X Guo, C Schindler, S Menzel, and R Waser, APPLIED PHYSICS LETTERS. 91, 133513-1-3 (2007).
http://dx.doi.org/10.1063/1.2793686
15.
15.T Fujii, M Kawasaki, A Sawa, H Akoh, Y Kawazoe, and Y Tokura, APPLIED PHYSICS LETTERS. 86, 012107-1-3 (2004).
16.
16.R Waser, R Dittmann, G Staikov, and K Szot, Adv Mater 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
17.
17.G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys. 33, 1129 (1970).
http://dx.doi.org/10.1088/0034-4885/33/3/306
18.
18. Blanka Magyari-Köpe, Seong Geon Park, Hyung-Dong Lee, and Yoshio Nishi, J Mater Sci 47, 7498 (2012);
http://dx.doi.org/10.1007/s10853-012-6638-1
18. Park Seong-Geon, Magyari-Köpe Blanka, and Nishi Yoshio, IEEE ELECTRON DEVICE LETTERS. 32, 2 (2011).
http://dx.doi.org/10.1109/LED.2011.2176634
19.
19.L. Zhang, H. Y. Xu, Z. Q. Wang, H. Yu, X. N. Zhao, J. G. Ma, and Y. C. Liu, APPLIED PHYSICS LETTERS. 104, 093512 (2014).
http://dx.doi.org/10.1063/1.4867977
20.
20.Xiao- Jian ZHU, Jie SHANG, and Run -Wei LI, Frontiers of Materials Science. 6, 183 (2012).
http://dx.doi.org/10.1007/s11706-012-0170-8
21.
21.Y C Bae, A R Lee, and J S Kwak, Current Applied Physics. 11, e66 (2011).
http://dx.doi.org/10.1016/j.cap.2010.11.125
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4906792
Loading
/content/aip/journal/adva/5/1/10.1063/1.4906792
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4906792
2015-01-23
2016-12-10

Abstract

HfO-based resistive random access memory (RRAM) takes advantage of oxygen vacancy (V ) defects in its principle of operation. Since the change in resistivity of the material is controlled by the level of oxygen deficiency in the material, it is significantly important to study the performance of oxygen vacancies in formation of conductive filament. Excluding effects of the applied voltage, the Vienna ab initio simulation package (VASP) is used to investigate the orientation and concentration mechanism of the oxygen vacancies based on the first principle. The optimal value of crystal orientation [010] is identified by means of the calculated isosurface plots of partial charge density, formation energy, highest isosurface value, migration barrier, and energy band of oxygen vacancy in ten established orientation systems. It will effectively influence the SET voltage, forming voltage, and the ON/OFF ratio of the device. Based on the results of orientation dependence, different concentration models are established along crystal orientation [010]. The performance of proposed concentration models is evaluated and analyzed in this paper. The film is weakly conductive for the samples deposited in a mixture with less than 4.167at.% of V contents, and the resistive switching (RS) phenomenon cannot be observed in this case. The RS behavior improves with an increase in the V contents from 4.167at.% to 6.25at.%; nonetheless, it is found difficult to switch to a stable state. However, a higher V concentration shows a more favorable uniformity and stability for HfO-based RRAM.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4906792.html;jsessionid=mvNe7WTyXsP1aSgbCm41xgw5.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4906792&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4906792&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4906792'
Right1,Right2,Right3,