Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4906794
1.
1.Brian E. McCandless and James R. Sites, Cadmium Telluride Solar Cells (Wiley Online Library), Chapter 14.
2.
2.C.S. Ferekides*, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, and D. L. Morel, Thin Solid Films 361-362, 520-526 (2000).
http://dx.doi.org/10.1016/S0040-6090(99)00824-X
3.
3.J. LI, J. GAYLES, N. KIOUSSIS, Z. ZHANG, C. GREIN, and F. AQARIDEN, J ELECTRONIC MATERIALS 41(10), (2012).
4.
4.J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851-2852 (1993).
http://dx.doi.org/10.1063/1.109629
5.
5.K. Zanio, Cadmium Telluride, Semiconductors and Semimetals (Academic Press, New York, 1978), Vol. 13.
6.
6.J. Ma, D. Kuciauskas, D. Albin, R. Bhattacharya, M. Reese, T. Barnes, J. V. Li, T. sert, and S. H. Wei, Phys. Rev. Lett. 111, 067402 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.067402
7.
7.A. E. Patrakov, R. F. Fink, K. Fink, T. C. Schmidt, and B. Engels, Status Solidi B 247(4), 937-944 (2010).
http://dx.doi.org/10.1002/pssb.201046080
8.
8.S.-K. Chang and A. V. Nurmikko, Phys. Rev. B 33(4), (1986).
9.
9.S. Adachi, T. Kimura, and N. Suzuki, J. Appl. Phys. 74(5), (1993).
http://dx.doi.org/10.1063/1.354543
10.
10.R. Andre, C. Deshayes, J. Cibert, Le Si Dang, and S. Tatarenko, Phys. Rev. B 42(17), (1990-I).
http://dx.doi.org/10.1103/PhysRevB.42.11392
11.
11.J. Huerta, M. López, and O. Zelaya-Angel, J. Vac. Sci. Technol. B 18(3), (May/Jun 2000).
http://dx.doi.org/10.1116/1.591459
12.
12.T. W. Kim, B. J. Koo, M. Jung, S. B. Kim, H. L. Park, H. Lim, J. I. Lee, and K. N. Kang, J. Appl. Phys. 71(2), (1992).
13.
13.CRC Handbook of Chemistry and Physics, 88th edition, edited by D.R. Lide (CRC Press/Taylor and Francis, Boca Raton, FL).
14.
14.P.E. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
15.
15.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
16.
16.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
17.
17.J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
18.
18.J.A. White and D.M. Bird, Phys. Rev. B 50, 4954 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.4954
19.
19.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
20.
20.J. Wang, G. Tang a, X.S. Wu b, and M. Gu, Thin Solid Films 520, 3960-3964 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.01.024
21.
21.R. Miotto et al., Surface Science 525, 24-32 (2003).
http://dx.doi.org/10.1016/S0039-6028(02)02569-4
22.
22.Somesh Kr. Bhattacharya* and Anjali Kshirsagar, Phys. Rev. B 75, 035402 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035402
23.
23.Shuqiang Jin et al., New J. of Phys. 14, 113021 (2012) (13pp).
http://dx.doi.org/10.1088/1367-2630/14/11/113021
24.
24.S. Gundel, A. Fleszar, W. Faschinger, and W. Hanke, Phys. Rev. B 59, 15261 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.15261
25.
25.K. Shiraishi, J. Phys. Soc. Jpn 59, 3455 (1990).
http://dx.doi.org/10.1143/JPSJ.59.3455
26.
26.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
27.
27.G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 22 (2000).
28.
28.D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008).
http://dx.doi.org/10.1063/1.2841941
29.
29.D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson, and G. Henkelman, J. Chem. Phys. 136, 074103 (2012).
http://dx.doi.org/10.1063/1.3684549
30.
30.J. Wang, G. Tang,a, X.S. Wub, and M. Gub, Surf. Interface Anal. 44, 434-438 (2012).
http://dx.doi.org/10.1002/sia.3822
31.
31.J. Zhao, Y. Zeng, C. Liu, and L. Cui, Vacuum 86, 1062e1066 (2012).
32.
32.T. S. Jeong and C. J. Youn, J. Korean Physical Society 42(4), 549553 (April 2003).
33.
33.L. Jin, Y. Linyu, J. Jikang, Z. Hua, and S. Yanfei, J. Semiconductors 30(11), (2009).
34.
34.Y. Xin, N. D. Browning, S. Rujirawat, S. Sivananthan, Y. P. Chen, P. D. Nellist, and S. J. Pennycook, J. Appl. Phys. 84(8), (1998).
http://dx.doi.org/10.1063/1.368647
35.
35.Ping Lu and David J. Smith, Phys. Rev. Lett. 59(19), (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2177
36.
36.See supplementary material at http://dx.doi.org/10.1063/1.4906794 for similar configuration of systems Cd on B-type, Te on A-type and Cd on A-type.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4906794
Loading
/content/aip/journal/adva/5/1/10.1063/1.4906794
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4906794
2015-01-26
2016-09-30

Abstract

CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as A site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from A (occupied) to A (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4906794.html;jsessionid=NrctcwSyVxWeQvd65lBuXGJq.x-aip-live-02?itemId=/content/aip/journal/adva/5/1/10.1063/1.4906794&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4906794&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4906794'
Right1,Right2,Right3,