Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys. 87, 4531 (2000).
2.Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Appl. Phys. Lett. 78, 1149 (2001).
3.A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys. 89, 3018 (2001).
4.A.-C. Ruo, K.-H. Chen, M.-H. Chang, and F. Chen, Phys. Rev. E 85, 016306 (2012).
5.J. Kameoka, R. Orth, Y. N. Yang, D. Czaplewski, R. Mathers, G. W. Coates, and H. G. Craighead, Nanotechnology 14, 1124 (2003).
6.D. H. Sun, C. Chang, S. Li, and L. W. Lin, Nano Lett. 6, 839 (2006).
7.C. Chang, K. Limkrailassiri, and L. W. Lin, Appl. Phys. Lett. 93, 123111 (2008).
8.G. S. Bisht, G. Canton, A. Mirsepassi, L. Kulinsky, S. Oh, D. Dunn-Rankin, and M. J. Madou, Nano Lett. 11, 1831 (2011).
9.S. Chiu-Webster and J. R. Lister, J. Fluid Mech. 569, 89 (2006).
10.N. M. Ribe, J. R. Lister, and S. Chiu-Webster, Phys. Fluids 18, 124105 (2006).
11.Y. Xin and D. H. Reneker, Polymer (2012).
12.H. Y. Kim, M. Lee, K. J. Park, S. Kim, and L. Mahadevan, Nano Lett. 10, 2138 (2010).
13.N. B. Bu, Y. A. Huang, X. M. Wang, and Z. P. Yin, Mater. Manuf. Process. 27, 1318 (2012).
14.Y. A. Huang, N. B. Bu, Y. Q. Duan, Y. Q. Pan, H. M. Liu, Z. P. Yin, and Y. L. Xiong, Nanoscale 5, 12007 (2013).
15.G. Zheng, Z. Yu, M. Zhuang, W. Wei, Y. Zhao, J. Zheng, and D. Sun, Appl. Phys. A-Mater. Sci. Process. 1 (2014).
16.Y. Xin and D. H. Reneker, Polymer 53, 4254 (2012).
17.Y. Huang, Y. Duan, Y. Ding, N. Bu, Y. Pan, N. Lu, and Z. Yin, Sci Rep 4 (2014).
18.C. Ru, J. Chen, Z. Shao, M. Pang, and J. Luo, AIP Adv. 4, 017108 (2014).
19.M. Habibi, J. Najafi, and N. Ribe, Phys. Rev. E 84 (2011).
20.S. Theron, E. Zussman, and A. Yarin, Polymer 45, 2017 (2004).
21.H. Kim, J. Song, J. Chung, and D. Hong, J. Appl. Phys. 108, 102804 (2010).
22.H. T. Yudistira, V. D. Nguyen, S. B. Q. Tran, T. S. Kang, J. K. Park, and D. Byun, Appl. Phys. Lett. 98, 083501 (2011).
23.S. Lee, K. An, S. Son, and J. Choi, Appl. Phys. Lett. 103, 133506 (2013).
24.R. Coelho and J. Debeau, J. Phys. D-Appl. Phys. 4, 1266 (1971).

Data & Media loading...


Article metrics loading...



We investigate the dynamics and shapes of electrified jet deposited onto a moving substrate in near-field electrospinning. At low speed, drag effect imposes on the jet and makes it buckling to a ‘heel’. As the ‘heel’ continues to move far away, a restoring force is accumulated until it is large enough to make an ‘out of the plane deformation’, which will also introduce torsion for the jet and turns it into a rotation state. When the speed increases, stretching effect makes jet drawing to a stable catenary shape. The ‘heel’ is a transition stage between catenary and rotation state due to the buckling of the jet. Moreover, the transformation from the ‘heel’ to ‘catenary’ is validated by modeling the jet as electrified filament. The simulation results show that the speed brings the pulling force exerted on the jet tail and it only depends on the substrate speed. The works provide a better understanding the effect mechanism of the substrate speed on the fiber morphology.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd