Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4907047
1.
1.Bruno Ullrich, Akhilesh K. Singh, Mithun Bhowmick, Puspendu Barik, David Ariza-Flores, Haowen Xi, and Jens W. Tomm, AIP Advances 4, 123001 (2014).
http://dx.doi.org/10.1063/1.4897383
2.
2.L. C. Campos, M. H. D. Guimarães, A. M. B. Goncalves, S. de Oliveira, and R. G. Lacerda, AIP Advances 3, 022104 (2013).
http://dx.doi.org/10.1063/1.4790633
3.
3.F. Fattahi Comjani, U. Willer, S. Kontermann, and W. Schade, AIP Advances 3, 102102 (2013).
http://dx.doi.org/10.1063/1.4824616
4.
4.Yoon Seog Song, Nak Jin Seong, Kyu Jeong Choi, and Sang Ouk Ryu, Thin Solid Films (2013).
5.
5.G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, Appl. Phys. Lett. 97, 13 (2010).
http://dx.doi.org/10.1063/1.3494535
6.
6.T. M. Souza, I. C. da Cunha Lima, and M. A. Boselli, Appl. Phys. Lett. 92, 15 (2008).
7.
7.Yi-Shiuan Tsai and Jian-Zhang Chen, IEEE Trans. Electron Devices 59, 1 (2012).
http://dx.doi.org/10.1109/TED.2012.2224152
8.
8.Yaonan Hou, Zengxia Mei, Huili Liang, Daqian Ye, Changzhi Gu, Xiaolong Du, and Yicheng Lu, IEEE Trans. Electron Devices 60, 10 (2013).
9.
9.S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, Appl. Phys. Lett. 80, 9 (2002).
http://dx.doi.org/10.1063/1.1456266
10.
10.F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, and H. A. van Laarhoven, Appl. Phys. Lett. 79, 19 (2001).
http://dx.doi.org/10.1063/1.1415050
11.
11.H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, and S. Niki, Appl. Phys. Lett. 90, 12 (2007).
http://dx.doi.org/10.1016/j.physletb.2006.11.062
12.
12.Ping Wang, Qinghong Zheng, Qing Tang, Yintang Yang, Lixin Guo, Kai Ding, and Feng Huang, Opt. Express 21, 15 (2013).
http://dx.doi.org/10.1364/OE.21.000A15
13.
13.C. H. Chia, T. Makino, K. Tamura, Y. Segawa, and M. Kawasaki, Appl. Phys. Lett. 82, 12 (2003).
http://dx.doi.org/10.1063/1.1561158
14.
14.K. Han, N. Tang, J. D. Ye, j. X. Duan, and Y. C. Liu, Appl. Phys. Lett. 100, 19 (2012).
15.
15.Shigehiko Sasa, Takeshi Maitani, Yuto Furuya, Takeshi Amano, Kazuto Koike, Mitsuaki Yano, and Masataka Inoue, Phys. Status Solidi A 208, 2 (2011).
http://dx.doi.org/10.1002/pssa.201000509
16.
16.D. J. Cohen, K. C. Ruthe, and S. A. Barnett, J. Appl. Phys. 96, 1 (2004).
http://dx.doi.org/10.1063/1.1760239
17.
17.K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, Appl. Phys. Lett. 85, 8 (2004).
http://dx.doi.org/10.1063/1.1784544
18.
18.Yi Ke, Joseph Berry, Philip Parilla, Andriy Zakutayev, Ryan O’Hayre, and David Ginley, Thin Solid Films 520, 9 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.12.020
19.
19.M. Ohtomo, T. Kawasaki, K. Koida, H. Masubuchi, Y. Koinuma, Y. Sakurai, T. Yoshida, Y. Yasuda, and Segawa, Appl. Phys. Lett. 72, 19 (1998).
http://dx.doi.org/10.1063/1.121384
20.
20.Z. Yarar, J. Electron. Mater. 40, 4 (2011).
http://dx.doi.org/10.1007/s11664-011-1516-1
21.
21.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 18 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
22.
22.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 12 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
23.
23.J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, J. App. Phys. 86, 12 (1999).
http://dx.doi.org/10.1063/1.371764
24.
24.Enrico Bellotti, Francesco Bertazzi, and Michele Goano, J. App. Phys. 101, 12 (2007).
http://dx.doi.org/10.1063/1.2748353
25.
25.D. J. Cohen and S. A. Barnett, J. Appl. Phys. 98, 5 (2005).
http://dx.doi.org/10.1063/1.2035898
26.
26.B. E. Foutz, L. F. Eastman, U. V. Bhapkar, and M. S. Shur, Appl. Phys. Lett. 70, 2849 (1997).
http://dx.doi.org/10.1063/1.119021
27.
27.A. F. M. Anwar, Shangli Wu, and Richard T. Webster, IEEE Trans. Electron Devices 48, 3 (2001).
http://dx.doi.org/10.1109/16.906452
28.
28.Carlos Sampedro-Matarín, Francisco Gámiz, Andrés Godoy, and Francisco J. García Ruiz, IEEE Trans. Electron Devices 53, 11 (2006).
http://dx.doi.org/10.1109/TED.2006.882782
29.
29.S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, J. Mater. Sci.: Mater. Electron. 21, 218 (2010).
30.
30.Shulong Wang, Hongxia Liu, Bo Gao, and Huimin Cai, Appl. Phys. Lett. 70, 2849 (2012).
31.
31.C. Bundesmann, M. Schubert, D. Spemann, T. Butz, M. Lorenz, E. M. Kaidashev, M. Grundmann, N. Ashkenov, H. Neumann, and G. Wagner, Appl. Phys. Lett. 81, 13 (2002).
http://dx.doi.org/10.1063/1.1509862
32.
32.Sadao Adachi, Properties Of Group-IV, III-V And II-VI Semiconductors (Wiley, New Jersey, 2005).
33.
33.Stephen K. O’Leary, Brian E. Foutz, Michael S. Shur, and Lester F. Eastman, Solid State Commun. 150, 43-44 (2010).
34.
34.Walid A. Hadi, Michael S. Shur, and Stephen K. O’Leary, J. Appl. Phys. 112, 3 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4907047
Loading
/content/aip/journal/adva/5/1/10.1063/1.4907047
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4907047
2015-01-27
2016-12-09

Abstract

Transient characteristics of wurtzite Zn MgO are investigated using a three-valley Ensemble Monte Carlo model verified by the agreement between the simulated low-field mobility and the experiment result reported. The electronic structures are obtained by first principles calculations with density functional theory. The results show that the peak electron drift velocities of Zn MgO (x = 11.1%, 16.7%, 19.4%, 25%) at 3000 kV/cm are 3.735 × 107, 2.133 × 107, 1.889 × 107, 1.295 × 107 cm/s, respectively. With the increase of Mg concentration, a higher electric field is required for the onset of velocity overshoot. When the applied field exceeds 2000 kV/cm and 2500 kV/cm, a phenomena of velocity undershoot is observed in Zn MgO and Zn MgO respectively, while it is not observed for Zn MgO and Zn MgO even at 3000 kV/cm which is especially important for high frequency devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4907047.html;jsessionid=HWVKPqu7wjVzBY2gEVL6U76v.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4907047&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4907047&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4907047'
Right1,Right2,Right3,