Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/1/10.1063/1.4907168
1.
1.A. Hagfeldt and M. Grätzel, Chem. Rev. 95, 49 (1995).
http://dx.doi.org/10.1021/cr00033a003
2.
2.A. L. Linsebigler, G. Lu, and J.T. Yates, J. Chem. Rev. 95, 735 (1995).
http://dx.doi.org/10.1021/cr00035a013
3.
3.A. Millis and S. J. Le Hunte, Photochem. Photobiol. A. 108, 1 (1997).
http://dx.doi.org/10.1016/S1010-6030(97)00118-4
4.
4.A. Fujishima and K. Honda, Nature 238, 37 (1972).
http://dx.doi.org/10.1038/238037a0
5.
5.D. Zhao, T.Y. Peng, L. L. Lu, P. Cai, P. Jiang, and Z. Q. Bian, J. Phys. Chem. C 112, 8486 (2008).
http://dx.doi.org/10.1021/jp800127x
6.
6.J. G. Yu, Y.R. Su, and B. Cheng, Adv. Func. Mater. 17, 1984 (2007).
http://dx.doi.org/10.1002/adfm.200600933
7.
7.C. M. Liu and S. H. Yang, ACS Nano 3, 1025 (2009).
http://dx.doi.org/10.1021/nn900157r
8.
8.X. Han, Q. Kuang, M. Jin, Z. Xie, and L. Zheng, J. Am. Chem. Soc. 131, 3152 (2009).
http://dx.doi.org/10.1021/ja8092373
9.
9.J. H. Braun, A. Baidins, and R. E. Marganski, Prog. Org. Coat. 20, 105 (1992).
http://dx.doi.org/10.1016/0033-0655(92)80001-D
10.
10.A. Salvador, M. C. Pascual-Marti, J. R. Adell, A. Requeni, and J. G. March, J. Pharm. Biomed. Anal. 22, 301 (2000).
http://dx.doi.org/10.1016/S0731-7085(99)00286-1
11.
11.C. Chenga and Y. Sunb, Appl. Sur. Sci. 263, 273 (2012).
http://dx.doi.org/10.1016/j.apsusc.2012.09.042
12.
12.A. K. Ghosh and H. P. Maruska, J. Electrochem. Soc. 124, 1516 (1977).
http://dx.doi.org/10.1149/1.2133104
13.
13.W. Y. Choi, A. Termin, and M. R. Hoffmann, J. Phy. Chem. 98, 13669 (1994).
http://dx.doi.org/10.1021/j100102a038
14.
14.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).
http://dx.doi.org/10.1126/science.1061051
15.
15.S. U. M. Khan, M. Al-Shahry, and W. B. Ingler, Science 297, 2243 (2002).
http://dx.doi.org/10.1126/science.1075035
16.
16.S. Sakthivel and H. Kisch, Ange. Chem.-Int. Ed. 42, 4908 (2003).
http://dx.doi.org/10.1002/anie.200351577
17.
17.W. Dauer and S. Przedborski, Neuron 39, 889 (2003).
http://dx.doi.org/10.1016/S0896-6273(03)00568-3
18.
18.B. J. B. Cynthia and C. Chernecky, Laboratory Tests and Diagnostic Procedures, 5th ed. (Elsevier Health Sciences, 2008).
19.
19.L. Dubois and D. Gray, “Dopamine-secreting Pheochromocytomas: In Search of a Syndrome,” World J Surg. 29, 909 (2005).
http://dx.doi.org/10.1007/s00268-005-7860-7
20.
20.R. N. Goyal, V. K. Gupta, N. Bachheti, and R. A. Sharma, Electroanal. 20, 757 (2008).
http://dx.doi.org/10.1002/elan.200704073
21.
21.Z. D. Peterson, D. C. Collins, C. R. Bowerbank, M. L. Lee, and S. W. Graves, Analyt Tech. Biomed. Life Sci. 776, 221 (2002).
http://dx.doi.org/10.1016/S1570-0232(02)00368-9
22.
22.J. Bicker, A. Fortuna, G. Alves, and A. Falcao, Anal. Chim. Acta 768, 12 (2013).
http://dx.doi.org/10.1016/j.aca.2012.12.030
23.
23.S. Alwarappan, G. Liu, and C.-Z. Li, Biology and Medicine 6, 52 (2010).
24.
24.M. Hadi and A. Rouhollahi, Anal. Chim. Acta 721, 55 (2012).
http://dx.doi.org/10.1016/j.aca.2012.01.051
25.
25.S.-J. Li, J.-Z. He, M.-J. Zhang, R.-X. Zhang, X.-L. Lv, and S.-H. Li, Electrochim Acta 102, 58 (2013).
http://dx.doi.org/10.1016/j.electacta.2013.03.176
26.
26.K. Prabakar, M–K. Son, D. Ludeman, and H. J. Kim, Thin Solid Films 519, 894 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.08.123
27.
27.B. Pradhan, A. Bandyopadhyay, and A. J. Pal, Appl. Phys. Lett. 85, 663 (2004).
http://dx.doi.org/10.1063/1.1775891
28.
28.M. Grätzel, Nature 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
29.
29.M. Gratzel, J. Photochem. Phoobiol. A: chem. 164, 3 (2004).
http://dx.doi.org/10.1016/j.jphotochem.2004.02.023
30.
30.B. H.Q. Dang, D. MacElroy, and D. P. Dowling, Appl. Sur. Sci. 275, 289 (2013).
http://dx.doi.org/10.1016/j.apsusc.2012.12.121
31.
31.G. T. Soon How, A. Pandikumar, H. N. Ming, and L. H. Ngee, Sci. reports, 4 : 5044 | DOI: 10.1038/srep05044.
32.
32.J. Yi, J. Fan, and K. Lv, Nanoscale. 2, 2144 (2010).
http://dx.doi.org/10.1039/c0nr00427h
33.
33.J. Hughdahl, K. Hox, S. Lynum, R. Hildrum, and M. Norvik, Norwegian Patent No. NO325686 (B1), issued 1999.09.23.
34.
34.T. Garberg, S. N. Naess, G. Helgesen, K. D. Knudsen, G. Kopstad, and A. Elgsaeter, Carbon 46, 1535 (2008).
http://dx.doi.org/10.1016/j.carbon.2008.06.044
35.
35.A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, and T. W. Ebbesen, Nature (London) 388, 451 (1997).
http://dx.doi.org/10.1038/41284
36.
36.J. C. Yu, J. Yu, W. Ho, Z. Jiang, and L. Zhang, Chem. Mater. 14, 3808 (2002).
http://dx.doi.org/10.1021/cm020027c
37.
37.D. Li, H. Haneda, S. Hishita, N. Ohashi, and N. K. Labhestwar, J. Fluorine Chem. 126, 69 (2005).
http://dx.doi.org/10.1016/j.jfluchem.2004.10.044
38.
38.N. Todorova, T. Giannakopoulou, G. Romanoa, T. Vaimakis, Jiaguo Yu, and C. Trapalis, Int. J. Photo. Article 1D534038, 1 (2008).
39.
39.R. Sellapan, A. Galeckas, V. Venkatachalapathy, A. Y. Kuznetsov, and D. Chakarov, App. Catal. B: Environ. 106, 337 (2011).
http://dx.doi.org/10.1016/j.apcatb.2011.05.036
40.
40.G. Zhang, K. Pan, W. Z. Qu, Q. Pan, B. Jiang, G. Tian, G. Wang, Y. Xie, Youzen Dong, X. Miao, and C. Tian, Dalton Transc. 41, 12683 (2012).
http://dx.doi.org/10.1039/c2dt31046e
41.
41.M. Umadevi, M. Sangari, R. Parimaladevi, A. Sivanantham, and J. Mayandi, J. Fluorine Chemi. 156, 209 (2013).
http://dx.doi.org/10.1016/j.jfluchem.2013.10.011
42.
42.R. F. Howe and M. Gratzel, J. Phys. Chem. 91, 3906 (1987).
http://dx.doi.org/10.1021/j100298a035
43.
43.O. I. Micic, Y. Zhang, K. R Cromack, A. D. Trifumac, and M. C. Thurnauer, J. Phys. Chem. 97, 7277 (1993).
http://dx.doi.org/10.1021/j100130a026
44.
44.A. M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, S. Agnoli, G. Granozzi, E. Finazzi, C. Di. Valentin, and G. Pacchioni, J. Phys. Chem. C 112, 8951 (2008).
http://dx.doi.org/10.1021/jp8004184
45.
45.R. F. Howe and M. Gratzel, Phys. Chem. 89, 4495 (1985).
http://dx.doi.org/10.1021/j100267a018
46.
46.Y. Nakaoka and Y. Nosaka, J. Photochem. Photobio. A, Chem. 110, 299 (1997).
http://dx.doi.org/10.1016/S1010-6030(97)00208-6
47.
47.J. Cernak, G. Helgesen, A. T. Skjeltorp, J. Kovac, J. Voltr, and E. Cizmar, Physical Review B. 87, 014434 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.014434
48.
48.Junling Song, Hong Bin Yang, Xiu Wang, Si Yun Khoo, C.C. Wong, Xue-Wei Liu, and Chang Ming Li, ACS Appl. Mater. Interfaces. 4, 3712 (2012).
http://dx.doi.org/10.1021/am300801f
49.
49.G. Yang, J. Zhang, P. Wang, Q. Sun, J. Zheng, and Y. Zhu, Curr. Appl. Phy. 11, 376 (2011).
http://dx.doi.org/10.1016/j.cap.2010.08.008
50.
50.G. Rothenberger, P. Comte, and M. Grazel, Sol. Energy Mat. Sol. Cells 3, 321 (1999).
http://dx.doi.org/10.1016/S0927-0248(99)00015-X
51.
51.Shuming Yang, Hongbin Xue, Hongjun Wang, Huizhi Kou, Jichao Wang, and Guanghui Zhu, J. Phys. Chem. Solids 73, 911 (2012).
http://dx.doi.org/10.1016/j.jpcs.2012.02.027
52.
52.J.G. Yu, J.J. Fan, and L. Zhao, Electrochim. Acta 55, 597 (2010).
http://dx.doi.org/10.1016/j.electacta.2009.09.021
53.
53.N. G. Park, J. V. D. Lagemeaat, and A.J Frank, J. Phys. Chem. B 104, 8989 (2000).
http://dx.doi.org/10.1021/jp994365l
54.
54.Binh. H.Q. Dang, Don Mac Elroy, and Denis P. Dowling, Appl Surf Sci. 275, 289 (2013).
http://dx.doi.org/10.1016/j.apsusc.2012.12.121
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/1/10.1063/1.4907168
Loading
/content/aip/journal/adva/5/1/10.1063/1.4907168
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/1/10.1063/1.4907168
2015-01-28
2016-09-25

Abstract

The role of Fluorine and Carbon as dopants in the TiO based electrochemical sensor and DSSC were presented in this work. A series of Carbon nano-cones and disc doped TiO (TC), Fluorine doped TiO (FT) and C & F co-doped TiO (CFT) powdered samples were prepared via solid state synthesis. The CFT film showed excellent electrochemical sensitivity to the oxidation of dopamine in aqueous solution and could be employed as a dopamine sensor. The proposed sensor exhibited good linear response in the range of 10-820 μM with a detection limit of 3.6 μM under optimum conditions. The photovoltaic performances of Rose Bengal sensitized solar cells were assessed through I-V measurements. The CFT based DSSC shows a short-circuit current density and a power conversion efficiency (η) of 0.908 mA/cm2 and 0.163% respectively, which is 35% and 38% greater than the performance of other PT based cells. The characterization studies such as UV-Visible spectroscopy, Photoluminescence, TEM and EPR spectroscopy were utilized for further investigation, which helps us to understand how fluorine and carbon play a part in dopamine sensing and solar energy conversion.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/1/1.4907168.html;jsessionid=SZKKjcLWJfowM4R90mx-bOF9.x-aip-live-06?itemId=/content/aip/journal/adva/5/1/10.1063/1.4907168&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/1/10.1063/1.4907168&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/1/10.1063/1.4907168'
Right1,Right2,Right3,