Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Status Solidi RRL 9, 28 (2014).
2.A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Nature Materials 12, 1107 (2013).
3.P. Reinhard, B. Bissig, F. Pianezzi, H. Hagendorfer, G. Sozzi, R. Menozzi, C. Gretener, S. Nishiwaki, S. Buecheler, and A.N Tiwari, Nano Lett. 15, 3334 (2015).
4.B. Vermang, J. T. Wätjen, V. Fjällström, F. Rostvall, M. Edoff, R. Kotipalli, F. Henry, and D. Flandre, Prog. Photovolt: Res. Appl. 22, 1023 (2014).
5.B. Vermang, J. T. Wätjen, C. Frisk, V. Fjällström, F. Rostvall, M. Edoff, P. Salomé, J. Borme, N. Nicoara, and S. Sadewasser, IEEE Journal of Photovoltaics. 4, 1644 (2014).
6.R. Kotipalli, B. Vermang, V. Fjällström, M. Edoff, R. Delamare, and D. Flandre, Phys. Status Solidi RRL 9, 157 (2015).
7.J. Joel, B. Vermang, J. Larsen, O. Donze-Gargand, and M. Edoff, Phys. Status Solidi RRL, Phys. Status Solidi RRL (2015).
8.W. W. Hsu, J. Y. Chen, T. H. Cheng, S. C. Lu, W. S. Ho, Y. Y. Chen, Y. J. Chien, and C. W. Liu, Appl. Phys. Lett. 100, 023508 (2012).
9.G. Dingemans and W. M. M. Kessels, J. Vac. Sci. Technol. A 30, 040802 (2012).
10.B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, and W.M.M. Kessels, Appl. Phys. Lett. 89, 042112 (2006).
11.F. Werner, A. Cosceev, and J. Schmidt, Energy Procedia 27, 319 (2012).
12.R. Kotipalli, R. Delamare, O. Poncelet, X. Tang, L. A. Francis, and D. Flandre, EPJ Photovoltaics. 4, 45107 (2013).
13.D. K. Schroder, Semiconductor material and device characterization (John Wiley & Sons Inc, Hoboken, 2006).
14.E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).
15.Y. Yuan, L. Q. Wang, B. Yu, B. H. Shin, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, IEEE Electron Device Lett. 32, 485 (2011).
16.G. W. Paterson, M. C. Holland, I. G. Thayne, and A. R. Long, J. Appl. Phys. 111, 074109 (2012).
17.G. Brammertz, A. Alian, D. H. C. Lin, M. Meuris, M. Caymax, and W. E. Wang, IEEE Trans. Electron Devices 58, 3890 (2011).
18.E. J. Kim, L. Q. Wang, P. M. Asbeck, K. C. Saraswat, and P. C. McIntyre, Appl. Phys. Lett. 96, 012906 (2010).
19.E. H. Nicollian and A. Goetzberger, Bell System Tech. J. 46, 1055 (1967).
20.W.H. Wu and B.Y. Tsui, Electron Device Lett. IEEE 27 (2006).
21.W. Shockley and W. T Read, Physics Review 87, 835 (1952).
22.A. G. Aberle, S. Glunz, and W. Warta, J. Appl. Phys. 71, 4422 (1992).
23.K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes et al., IEEE Trans. Electron Devices 55, 547 (2008).
24.M. Gloeckler, Ph.D. thesis, Colorado State University, 2002.

Data & Media loading...


Article metrics loading...



Atomic layer deposited (ALD) Al O films on Cu(In,Ga)Se (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density ( ) and interface-trap charge density ( ), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al O films on CIGS surfaces using capacitance–voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges (approximately 1012 cm−2), whereas the PDA films exhibit a very high density of negative fixed charges (approximately 1013 cm−2). The extracted values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm−2 eV−1) for both AD and PDA samples. The high density of negative in the bulk of the PDA Al O film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (n), preventing them to recombine at the CIGS/AlO interface. Using experimentally extracted Q and D values, SCAPS simulation results showed that the surface concentration of minority carriers ( ) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al O/CIGS interface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd