Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4932566
1.
1.S. Iijima, nature 354(6348), 56 (1991).
http://dx.doi.org/10.1038/354056a0
2.
2.L. M. Viculis, J. J. Mack, and R. B. Kaner, Science 299(5611), 1361 (2003).
http://dx.doi.org/10.1126/science.1078842
3.
3.G. Mpourmpakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. 7(7), 1893 (2007).
http://dx.doi.org/10.1021/nl070530u
4.
4.M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, and L. Mai, J. Am. Chem. Soc. 135(48), 18176 (2013).
http://dx.doi.org/10.1021/ja409027s
5.
5.X. Shi, Y. Cheng, N. M. Pugno, and H. Gao, Small 6(6), 739 (2010).
http://dx.doi.org/10.1002/smll.200902286
6.
6.Y. Huang and T. Li, Journal of Applied Mechanics 80(4), 040903 (2013).
http://dx.doi.org/10.1115/1.4024167
7.
7.Z. Zhang and T. Li, Nanoscale research letters 6(1), 470 (2011).
http://dx.doi.org/10.1186/1556-276X-6-470
8.
8.X. Shi, Y. Cheng, N. M. Pugno, and H. Gao, Appl. Phys. Lett. 96(5), 053115 (2010).
http://dx.doi.org/10.1063/1.3302284
9.
9.H. Shioyama and T. Akita, Carbon 41(1), 179 (2003).
http://dx.doi.org/10.1016/S0008-6223(02)00278-6
10.
10.U. Mirsaidov, V. R. Mokkapati, D. Bhattacharya, H. Andersen, M. Bosman, B. Ozyilmaz, and P. Matsudaira, Lab on a chip 13(15), 2874 (2013).
http://dx.doi.org/10.1039/c3lc50304f
11.
11.Z. Zhang and T. Li, Appl. Phys. Lett. 97(8), 081909 (2010).
http://dx.doi.org/10.1063/1.3479050
12.
12.D. Xia, Q. Xue, J. Xie, H. Chen, C. Lv, F. Besenbacher, and M. Dong, Small 6(18), 2010 (2010).
http://dx.doi.org/10.1002/smll.201000646
13.
13.H. Y. Song, S. F. Geng, M. R. An, and X. W. Zha, J. Appl. Phys. 113(16), 164305 (2013).
http://dx.doi.org/10.1063/1.4803034
14.
14.E. Perim, R. Paupitz, and D. S. Galvão, J. Appl. Phys. 113(5), 054306 (2013).
http://dx.doi.org/10.1063/1.4790304
15.
15.J. Huang and C. H. Wong, Mech. Mater. 87, 1 (2015).
http://dx.doi.org/10.1016/j.mechmat.2015.03.008
16.
16.A. Sorkin and H. Su, Nanotechnology 25(3), 035601 (2014).
http://dx.doi.org/10.1088/0957-4484/25/3/035601
17.
17.S. Zhu and T. Li, J. Phys. D: Appl. Phys. 46(7), 075301 (2013).
http://dx.doi.org/10.1088/0022-3727/46/7/075301
18.
18.Z. Liu, Q. Xue, W. Xing, Y. Du, and Z. Han, Nanoscale 5(22), 11132 (2013).
http://dx.doi.org/10.1039/c3nr03558a
19.
19.C. D. Reddy and Y.-W. Zhang, Carbon 69, 86 (2014).
http://dx.doi.org/10.1016/j.carbon.2013.11.062
20.
20.S. F. Braga, V. R. Coluci, S. B. Legoas, R. Giro, D. S. Galvão, and R. H. Baughman, Nano Lett. 4(5), 881 (2004).
http://dx.doi.org/10.1021/nl0497272
21.
21.K. Cai, Y. Li, Q. H. Qin, and H. Yin, Nanotechnology 25(50), 505701 (2014).
http://dx.doi.org/10.1088/0957-4484/25/50/505701
22.
22.K. Cai, H. Yin, N. Wei, Z. Chen, and J. Shi, Appl. Phys. Lett. 106(2), 021909 (2015).
http://dx.doi.org/10.1063/1.4905696
23.
23.H. Yin, K. Cai, N. Wei, Q.-H. Qin, and J. Shi, J. Appl. Phys. 117(23), 234305 (2015).
http://dx.doi.org/10.1063/1.4922713
24.
24.S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112(14), 15 (2000).
http://dx.doi.org/10.1063/1.481208
25.
25.E. H. Cook, M. J. Buehler, and Z. S. Spakovszky, J. Mech. Phys. Solids 61(2), 652 (2013).
http://dx.doi.org/10.1016/j.jmps.2012.08.004
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4932566
Loading
/content/aip/journal/adva/5/10/10.1063/1.4932566
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4932566
2015-10-02
2016-09-29

Abstract

A carbon nanoscroll (CNS) can be formed easily by rolling a graphene sheet around a carbon nanotube (CNT) [Zhang and Li, 2010, APL, 97, 081909]. When the CNS is driven by the rotary CNT to rotate at a high speed, the attractive interaction within the CNS or between the CNS and CNT is crippled by the centrifugal force on the CNS. The unwinding of CNS is triggered when the kinetic energy increment approaches to the variation of interaction energy of the system during CNS formation. Numerical experiments also indicate that the unwinding of CNS happens earlier when the CNT has a higher rotational speed or the system is at a higher temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4932566.html;jsessionid=2slUOpk3cGeCCg96UBbyqaiV.x-aip-live-06?itemId=/content/aip/journal/adva/5/10/10.1063/1.4932566&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4932566&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4932566'
Right1,Right2,Right3,