Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933021
1.
1.Andre K. Geim and Konstantin S. Novoselov, Nat. Mater. 6(3), 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2.Mehmet Topsakal and Salim Ciraci, Phys. Rev. B 85(4), 045121 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045121
3.
3.Viktoria V. Ivanovskaya, Alberto Zobelli, Alexandre Gloter, Nathalie Brun, Virginie Serin, and Christian Colliex, Phys. Rev. B 78, 134104 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134104
4.
4.S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115409
5.
5.Agnieszka Kuc, Nourdine Zibouche, and Thomas Heine, Phys. Rev. B 83, 245213 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245213
6.
6.Ashwin Ramasubramaniam, Doron Naveh, and Elias Towe, Phys. Rev. B 84, 205325 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205325
7.
7.R. H. Friend and A. D. Yoffe, Adv. Phys. 36, 1 (1987).
http://dx.doi.org/10.1080/00018738700101951
8.
8.Yandong Ma, Ying Dai, Wei Wei, Chengwang Niu, Lin Yu, and Baibiao Huang, J. Phys. Chem. C 115, 20237 (2011).
http://dx.doi.org/10.1021/jp205799y
9.
9.Tsegabirhan B. Wendumu, Gotthard Seifert, Tommy Lorenz, Jan-Ole Joswig, and Andrey Enyashin, J. Phys. Chem. Lett. 5, 3636 (2014).
http://dx.doi.org/10.1021/jz501604j
10.
10.Qingqing Ji, Yanfeng Zhang, Teng Gao, Yu Zhang, Donglin Ma, Mengxi Liu, Yubin Chen, Xiaofen Qiao, Ping-Heng Tan, and Min Kan, Nano Lett. 13, 3870 (2013).
http://dx.doi.org/10.1021/nl401938t
11.
11.Humberto R. Gutiérrez, Nestor Perea-López, Ana Laura Elías, Ayse Berkdemir, Bei Wang, Ruitao Lv, Florentino López-Urías, Vincent H. Crespi, Humberto Terrones, and Mauricio Terrones, Nano Lett. 13, 3447 (2012).
http://dx.doi.org/10.1021/nl3026357
12.
12.Yanguang Li, Hailiang Wang, Liming Xie, Yongye Liang, Guosong Hong, and Hongjie Dai, J. Am. Chem. Soc. 133, 7296 (2011).
http://dx.doi.org/10.1021/ja201269b
13.
13.Jun Chen, Nobuhiro Kuriyama, Huatang Yuan, Hiroyuki T. Takeshita, and Tetsuo Sakai, J. Am. Chem. Soc. 123, 11813 (2001).
http://dx.doi.org/10.1021/ja017121z
14.
14.Branimir Radisavljevic, Aleksandra Radenovic, Jacopo Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
15.
15.Marcio Fontana, Tristan Deppe, Anthony K. Boyd, Mohamed Rinzan, Amy Y. Liu, Makarand Paranjape, and Paola Barbara, Sci. Rep. 3, 1634 (2013).
http://dx.doi.org/10.1038/srep01634
16.
16.Kun Chang and Weixiang Chen, J. Mater. Chem. 21, 17175 (2011).
http://dx.doi.org/10.1039/c1jm12942b
17.
17.S. Helveg, Jeppe Vang Lauritsen, Erik Lægsgaard, Ivan Stensgaard, Jens Kehlet Nørskov, B. S. Clausen, H. Topsøe, and Flemming Besenbacher, Phys. Rev. Lett. 84, 951 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.951
18.
18.J. V. Lauritsen, J Kibsgaard, S Helveg, H Topsøe, B. S. Clausen, E Laegsgaard, and F Besenbacher, Nat. Nanotechnol. 2, 53 (2007).
http://dx.doi.org/10.1038/nnano.2006.171
19.
19.Yi Hsien Lee, Xin Quan Zhang, Wenjing Zhang, MuTung Chang, Cheng Te Lin, Kai Di Chang, Ya Chu Yu, Jacob TseWei Wang, Chia Seng Chang, and LainJong Li, Adv. Mater. 24, 2320 (2012).
http://dx.doi.org/10.1002/adma.201104798
20.
20.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
21.
21.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
22.
22.C. Ataca and S. Ciraci, J. Phys. Chem. C 115, 13303 (2011).
http://dx.doi.org/10.1021/jp2000442
23.
23.D. Yang, S. Jiménez Sandoval, W. M. R. Divigalpitiya, J. C. Irwin, and R. F. Frindt, Phys. Rev. B 43, 12053 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.12053
24.
24.Yungang Zhou, Ping Yang, Haoyue Zu, Fei Gao, and Xiaotao Zu, Phys. Chem. Chem. Phys. 15, 10385 (2013).
http://dx.doi.org/10.1039/c3cp50381j
25.
25.Yuanyue Liu, Somnath Bhowmick, and Boris I. Yakobson, Nano Lett. 11, 3113 (2011).
http://dx.doi.org/10.1021/nl2011142
26.
26.Sukky Jun, Phys. Rev. B 78, 073405 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.073405
27.
27.Shanshan Wang, Youmin Rong, Ye Fan, Mercè Pacios, Harish Bhaskaran, Kuang He, and Jamie H. Warner, Chem. Mat. 26, 6371 (2014).
http://dx.doi.org/10.1021/cm5025662
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4933021 for WS2 growth pattern calculated with matrix method.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933021
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933021
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933021
2015-10-07
2016-12-05

Abstract

Triangular nanoflake growth patterns have been commonly observed in synthesis of transition metal dichalcogenide sheets and their hybrid structures. Triangular nanoflakes not only show exceptional properties, but also can serve as building blocks for two or three dimensional structures. In this study, taking the MoS system as a test case, we propose a Matrix method to understand the mechanism of such unique growth pattern. Nanoflakes with different edge types are mathematically described with configuration matrices, and the total formation energy is calculated as the sum of the edge formation energies and the chemical potentials of sulfur and molybdenum. Based on energetics, we find that three triangular patterns with the different edge configurations are energetically more favorable in different ranges of the chemical potential of sulfur, which are in good agreement with experimental observations. Our algorithm has high efficiency and can deal with nanoflakes in microns which are beyond the ability of method. This study not only elucidates the mechanism of triangular nanoflake growth patterns in experiment, but also provides a clue to control the geometric configurations in synthesis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933021.html;jsessionid=No9-GT7SqHFlgVIPwFs8n7Po.x-aip-live-02?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933021&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933021&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933021'
Right1,Right2,Right3,