Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. S. Meyerson, K. J. Uram, and F. K. LeGoues, “Cooperative growth phenomena in silicon/germanium low temperature epitaxy,” Appl. Phys. Lett. 53, 25552557 (1988).
2.Y. J. Mii, Y. H. Xie, E. A. Fitzgerald, D. Monroe, F. A. Thiel, B. E. Weir, and L. C. Feldman, “Extremely high electron mobility in Si/GexSi1−x structures grown by molecular beam epitaxy,” Appl. Phys. Lett. 59, 16111613 (1991).
3.F. Schaffler, D. Tobben, H. J. Herzog, G. Abstreiter, and B. Hollander, “High-electron-mobility Si/SiGe heterostructures: influence of the relaxed SiGe buffer layer,” Semicond. Sci. Tech. 7, 260 (1992).
4.K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu, and B. S. Meyerson, “Extremely high electron mobility in Si/SiGe modulationdoped heterostructures,” Appl. Phys. Lett. 66, 10771079 (1995).
5.G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, “Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1−x superlattices,” Phys. Rev. Lett. 54, 24412444 (1985).
6.T. M. Lu, D. C. Tsui, C.-H. Lee, and C. W. Liu, “Observation of two-dimensional electron gas in a si quantum well with mobility of 1.6 × 106cm2/V s,” Appl. Phys. Lett. 94, 182102 (2009).
7.S.-H. Huang, T.-M. Lu, S.-C. Lu, C.-H. Lee, C. W. Liu, and D. C. Tsui, “Mobility enhancement of strained si by optimized SiGe/Si/SiGe structures,” Appl. Phys. Lett. 101, 042111 (2012).
8.D. Tobben, D. A. Wharam, G. Abstreiter, J. P. Kolthaus, and F. Schaffler, “Ballistic electron transport through a quantum point contact defined in a Si/Si0.7Ge0.3 heterostructure,” Semicond. Sci. Tech. 10, 711 (1995).
9.U. Wieser, U. Kunze, K. Ismail, and J. Chu, “Fabrication of Si/SiGe quantum point contacts by electron-beam lithography and shallow wet-chemical etching,” Physica E 13, 10471050 (2002).
10.T. M. Lu, N. C. Bishop, T. Pluym, J. Means, P. G. Kotula, J. Cederberg, L. A. Tracy, J. Dominguez, M. P. Lilly, and M. S. Carroll, “Enhancement-mode buried strained silicon channel quantum dot with tunable lateral geometry,” Appl. Phys. Lett. 99, 043101 (2011).
11.M. G. Borselli, K. Eng, E. T. Croke, B. M. Maune, B. Huang, R. S. Ross, A. A. Kiselev, P. W. Deelman, I. Alvarado-Rodriguez, A. E. Schmitz, M. Sokolich, K. S. Holabird, T. M. Hazard, M. F. Gyure, and A. T. Hunter, “Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots,” Appl. Phys. Lett. 99, 063109 (2011).
12.B. Maune, M. Borselli, B. Huang, T. Ladd, P. Deelman, K. Holabird, A. Kiselev, I. Alvarado-Rodriguez, R. Ross, A. Schmitz et al., “Coherent singlet-triplet oscillations in a silicon-based double quantum dot,” Nature 481, 344347 (2012).
13.K. Wang, C. Payette, Y. Dovzhenko, P. W. Deelman, and J. R. Petta, “Charge relaxation in a single-electron Si/SiGe double quantum dot,” Phys. Rev. Lett. 111, 046801 (2013).
14.Y. Imry, Introduction to mesoscopic physics (Oxford University Press, 2002).
15.M. Shayegan, V. J. Goldman, C. Jiang, T. Sajoto, and M. Santos, “Growth of low density two dimensional electron system with very high mobility by molecular beam epitaxy,” Appl. Phys. Lett. 52, 10861088 (1988).
16.C. Jiang, D. C. Tsui, and G. Weimann, “Threshold transport of high mobility two dimensional electron gas in GaAs/AlGaAs heterostructures,” Appl. Phys. Lett. 53, 15331535 (1988).
17.U. Bockelmann, G. Abstreiter, G. Weimann, and W. Schlapp, “Single-particle and transport scattering times in narrow GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 41, 78647867 (1990).
18.P. T. Coleridge, “Inter-subband scattering in a 2D electron gas,” Semicond. Sci. Tech. 5, 961 (1990).
19.A. Kurobe, J. E. F. Frost, M. P. Grimshaw, D. A. Ritchie, G. A. C. Jones, and M. Pepper, “Wave function deformation and mobility of a two dimensional electron gas in a backgated GaAs/AlGaAs heterostructure,” Appl. Phys. Lett. 62, 25222524 (1993).
20.B. E. Kane, L. N. Pfeiffer, and K. W. West, “High mobility GaAs heterostructure field effect transistor for nanofabrication in which dopant induced disorder is eliminated,” Appl. Phys. Lett. 67, 12621264 (1995).
21.D. Laroche, S. Das Sarma, G. Gervais, M. P. Lilly, and J. L. Reno, “Scattering mechanism in modulation-doped shallow two-dimensional electron gases,” Appl. Phys. Lett. 96, 162112 (2010).
22.K. Chain, J. hui Huang, J. Duster, P. K. Ko, and C. Hu, “A MOSFET electron mobility model of wide temperature range (77 - 400 K) for IC simulation,” Semicond. Sci. Tech. 12, 355 (1997).
23.N. Sugii, K. Nakagawa, Y. Kimura, S. Yamaguchi, and M. Miyao, “High electron mobility in strained Si channel of Si1−xGex/Si/Si1−xGex heterostructure with abrupt interface,” Semicond. Sci. Tech. 13, A140 (1998).
24.Z. Wilamowski, N. Sandersfeld, W. Jantsch, D. Többen, and F. Schäffler, “Screening breakdown on the route toward the metal-insulator transition in modulation doped Si/SiGe quantum wells,” Phys. Rev. Lett. 87, 026401 (2001).
25.V. Dolgopolov, E. Deviatov, A. Shashkin, U. Wieser, U. Kunze, G. Abstreiter, and K. Brunner, “Remote-doping scattering and the local field corrections in the 2D electron system in a modulation-doped Si/SiGe quantum well,” Superlattices Microst. 33, 271278 (2003).
26.C.-T. Huang, J.-Y. Li, and J. C. Sturm, “Very low electron density in undoped enhancement-mode Si/SiGe two-dimensional electron gases with thin SiGe cap layers,” ECS Trans. 53, 4550 (2013).
27.J.-Y. Li, C.-T. Huang, L. P. Rokhinson, and J. C. Sturm, “Extremely high electron mobility in isotopically-enriched 28Si two-dimensional electron gases grown by chemical vapor deposition,” Appl. Phys. Lett. 103, 162105 (2013).
28.X. Mi, T. M. Hazard, C. Payette, K. Wang, D. M. Zajac, J. V. Cady, and J. R. Petta, “Magnetotransport studies of mobility limiting mechanisms in undoped Si/SiGe heterostructures,” Phys. Rev. B 92, 035304 (2015).
29.B. Spivak, S. V. Kravchenko, S. A. Kivelson, and X. P. A. Gao, “Colloquium: Transport in strongly correlated two dimensional electron fluids,” Rev. Mod. Phys. 82, 17431766 (2010).
30.D. Monroe, Y. H. Xie, E. A. Fitzgerald, P. J. Silverman, and G. P. Watson, “Comparison of mobility limiting mechanisms in high mobility Si1−xGex heterostructures,” J. Vac. Sci. Technol. B 11, 17311737 (1993).
31.A. Gold, “Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature,” Phys. Rev. B 35, 723733 (1987).
32.N. Q. Khanh and N. M. Quan, “Transport properties of a quasi-two-dimensional electron gas in a SiGe/Si/SiGe quantum well including temperature and magnetic field effects,” Superlattices Microst. 64, 245250 (2013).
33.T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys. 54, 437672 (1982).
34.E. H. Hwang and S. Das Sarma, “Screening-theory-based description of the metallic behavior in Si/SiGe two-dimensional electron systems,” Phys. Rev. B 72, 085455 (2005).
35.C. M. Tanner, Y.-C. Perng, C. Frewin, S. E. Saddow, and J. P. Chang, “Electrical performance of Al2O3 gate dielectric films deposited by atomic layer deposition on 4H-SiC,” Appl. Phys. Lett. 91, 203510 (2007).
36.A. Gold, “Mobility of the non-polarized and the spin-polarized electron gas in Si/SiGe heterostructures: Remote impurities,” Europhys. Lett. 92, 67002 (2010).
37.A. Gold, “Metal-insulator transition in AlxGa1−xAs/GaAs heterostructures with large spacer width,” Phys. Rev. B 44, 88188824 (1991).
38.A. Gold, “Mobility and metal–insulator transition of the two-dimensional electron gas in SiGe/Si/SiGe quantum wells,” J. Appl. Phys. 108, 063710 (2010).
39.T. M. Lu, C.-H. Lee, S.-H. Huang, D. C. Tsui, and C. W. Liu, “Upper limit of two-dimensional electron density in enhancement-mode Si/SiGe heterostructure field-effect transistors,” Appl. Phys. Lett. 99, 153510 (2011).
40.C.-T. Huang, J.-Y. Li, K. S. Chou, and J. C. Sturm, “Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer,” Appl. Phys. Lett. 104, 243510 (2014).
41.S. D. Sarma, E. Hwang, S. Kodiyalam, L. Pfeiffer, and K. West, “Transport in two-dimensional modulation-doped semiconductor structures,” Phys. Rev. B 91, 205304 (2015).

Data & Media loading...


Article metrics loading...



We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ∼ 100 nm to ∼ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, , is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by ∼ 2.3. At the highest achievable densities in the quantum wells buried at intermediate depth, an exponent ∼ 5 is observed. We propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd