Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933026
1.
1.B. S. Meyerson, K. J. Uram, and F. K. LeGoues, “Cooperative growth phenomena in silicon/germanium low temperature epitaxy,” Appl. Phys. Lett. 53, 25552557 (1988).
http://dx.doi.org/10.1063/1.100206
2.
2.Y. J. Mii, Y. H. Xie, E. A. Fitzgerald, D. Monroe, F. A. Thiel, B. E. Weir, and L. C. Feldman, “Extremely high electron mobility in Si/GexSi1−x structures grown by molecular beam epitaxy,” Appl. Phys. Lett. 59, 16111613 (1991).
http://dx.doi.org/10.1063/1.106246
3.
3.F. Schaffler, D. Tobben, H. J. Herzog, G. Abstreiter, and B. Hollander, “High-electron-mobility Si/SiGe heterostructures: influence of the relaxed SiGe buffer layer,” Semicond. Sci. Tech. 7, 260 (1992).
http://dx.doi.org/10.1088/0268-1242/7/2/014
4.
4.K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu, and B. S. Meyerson, “Extremely high electron mobility in Si/SiGe modulationdoped heterostructures,” Appl. Phys. Lett. 66, 10771079 (1995).
http://dx.doi.org/10.1063/1.113577
5.
5.G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, “Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1−x superlattices,” Phys. Rev. Lett. 54, 24412444 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.2441
6.
6.T. M. Lu, D. C. Tsui, C.-H. Lee, and C. W. Liu, “Observation of two-dimensional electron gas in a si quantum well with mobility of 1.6 × 106cm2/V s,” Appl. Phys. Lett. 94, 182102 (2009).
http://dx.doi.org/10.1063/1.3127516
7.
7.S.-H. Huang, T.-M. Lu, S.-C. Lu, C.-H. Lee, C. W. Liu, and D. C. Tsui, “Mobility enhancement of strained si by optimized SiGe/Si/SiGe structures,” Appl. Phys. Lett. 101, 042111 (2012).
http://dx.doi.org/10.1063/1.4739513
8.
8.D. Tobben, D. A. Wharam, G. Abstreiter, J. P. Kolthaus, and F. Schaffler, “Ballistic electron transport through a quantum point contact defined in a Si/Si0.7Ge0.3 heterostructure,” Semicond. Sci. Tech. 10, 711 (1995).
http://dx.doi.org/10.1088/0268-1242/10/5/025
9.
9.U. Wieser, U. Kunze, K. Ismail, and J. Chu, “Fabrication of Si/SiGe quantum point contacts by electron-beam lithography and shallow wet-chemical etching,” Physica E 13, 10471050 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00299-0
10.
10.T. M. Lu, N. C. Bishop, T. Pluym, J. Means, P. G. Kotula, J. Cederberg, L. A. Tracy, J. Dominguez, M. P. Lilly, and M. S. Carroll, “Enhancement-mode buried strained silicon channel quantum dot with tunable lateral geometry,” Appl. Phys. Lett. 99, 043101 (2011).
http://dx.doi.org/10.1063/1.3615288
11.
11.M. G. Borselli, K. Eng, E. T. Croke, B. M. Maune, B. Huang, R. S. Ross, A. A. Kiselev, P. W. Deelman, I. Alvarado-Rodriguez, A. E. Schmitz, M. Sokolich, K. S. Holabird, T. M. Hazard, M. F. Gyure, and A. T. Hunter, “Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots,” Appl. Phys. Lett. 99, 063109 (2011).
http://dx.doi.org/10.1063/1.3623479
12.
12.B. Maune, M. Borselli, B. Huang, T. Ladd, P. Deelman, K. Holabird, A. Kiselev, I. Alvarado-Rodriguez, R. Ross, A. Schmitz et al., “Coherent singlet-triplet oscillations in a silicon-based double quantum dot,” Nature 481, 344347 (2012).
http://dx.doi.org/10.1038/nature10707
13.
13.K. Wang, C. Payette, Y. Dovzhenko, P. W. Deelman, and J. R. Petta, “Charge relaxation in a single-electron Si/SiGe double quantum dot,” Phys. Rev. Lett. 111, 046801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.046801
14.
14.Y. Imry, Introduction to mesoscopic physics (Oxford University Press, 2002).
15.
15.M. Shayegan, V. J. Goldman, C. Jiang, T. Sajoto, and M. Santos, “Growth of low density two dimensional electron system with very high mobility by molecular beam epitaxy,” Appl. Phys. Lett. 52, 10861088 (1988).
http://dx.doi.org/10.1063/1.99219
16.
16.C. Jiang, D. C. Tsui, and G. Weimann, “Threshold transport of high mobility two dimensional electron gas in GaAs/AlGaAs heterostructures,” Appl. Phys. Lett. 53, 15331535 (1988).
http://dx.doi.org/10.1063/1.99948
17.
17.U. Bockelmann, G. Abstreiter, G. Weimann, and W. Schlapp, “Single-particle and transport scattering times in narrow GaAs/AlxGa1−xAs quantum wells,” Phys. Rev. B 41, 78647867 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7864
18.
18.P. T. Coleridge, “Inter-subband scattering in a 2D electron gas,” Semicond. Sci. Tech. 5, 961 (1990).
http://dx.doi.org/10.1088/0268-1242/5/9/006
19.
19.A. Kurobe, J. E. F. Frost, M. P. Grimshaw, D. A. Ritchie, G. A. C. Jones, and M. Pepper, “Wave function deformation and mobility of a two dimensional electron gas in a backgated GaAs/AlGaAs heterostructure,” Appl. Phys. Lett. 62, 25222524 (1993).
http://dx.doi.org/10.1063/1.109309
20.
20.B. E. Kane, L. N. Pfeiffer, and K. W. West, “High mobility GaAs heterostructure field effect transistor for nanofabrication in which dopant induced disorder is eliminated,” Appl. Phys. Lett. 67, 12621264 (1995).
http://dx.doi.org/10.1063/1.114391
21.
21.D. Laroche, S. Das Sarma, G. Gervais, M. P. Lilly, and J. L. Reno, “Scattering mechanism in modulation-doped shallow two-dimensional electron gases,” Appl. Phys. Lett. 96, 162112 (2010).
http://dx.doi.org/10.1063/1.3402765
22.
22.K. Chain, J. hui Huang, J. Duster, P. K. Ko, and C. Hu, “A MOSFET electron mobility model of wide temperature range (77 - 400 K) for IC simulation,” Semicond. Sci. Tech. 12, 355 (1997).
http://dx.doi.org/10.1088/0268-1242/12/4/002
23.
23.N. Sugii, K. Nakagawa, Y. Kimura, S. Yamaguchi, and M. Miyao, “High electron mobility in strained Si channel of Si1−xGex/Si/Si1−xGex heterostructure with abrupt interface,” Semicond. Sci. Tech. 13, A140 (1998).
http://dx.doi.org/10.1088/0268-1242/13/8A/040
24.
24.Z. Wilamowski, N. Sandersfeld, W. Jantsch, D. Többen, and F. Schäffler, “Screening breakdown on the route toward the metal-insulator transition in modulation doped Si/SiGe quantum wells,” Phys. Rev. Lett. 87, 026401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.026401
25.
25.V. Dolgopolov, E. Deviatov, A. Shashkin, U. Wieser, U. Kunze, G. Abstreiter, and K. Brunner, “Remote-doping scattering and the local field corrections in the 2D electron system in a modulation-doped Si/SiGe quantum well,” Superlattices Microst. 33, 271278 (2003).
http://dx.doi.org/10.1016/j.spmi.2004.02.003
26.
26.C.-T. Huang, J.-Y. Li, and J. C. Sturm, “Very low electron density in undoped enhancement-mode Si/SiGe two-dimensional electron gases with thin SiGe cap layers,” ECS Trans. 53, 4550 (2013).
http://dx.doi.org/10.1149/05303.0045ecst
27.
27.J.-Y. Li, C.-T. Huang, L. P. Rokhinson, and J. C. Sturm, “Extremely high electron mobility in isotopically-enriched 28Si two-dimensional electron gases grown by chemical vapor deposition,” Appl. Phys. Lett. 103, 162105 (2013).
http://dx.doi.org/10.1063/1.4824729
28.
28.X. Mi, T. M. Hazard, C. Payette, K. Wang, D. M. Zajac, J. V. Cady, and J. R. Petta, “Magnetotransport studies of mobility limiting mechanisms in undoped Si/SiGe heterostructures,” Phys. Rev. B 92, 035304 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.035304
29.
29.B. Spivak, S. V. Kravchenko, S. A. Kivelson, and X. P. A. Gao, “Colloquium: Transport in strongly correlated two dimensional electron fluids,” Rev. Mod. Phys. 82, 17431766 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1743
30.
30.D. Monroe, Y. H. Xie, E. A. Fitzgerald, P. J. Silverman, and G. P. Watson, “Comparison of mobility limiting mechanisms in high mobility Si1−xGex heterostructures,” J. Vac. Sci. Technol. B 11, 17311737 (1993).
http://dx.doi.org/10.1116/1.586471
31.
31.A. Gold, “Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature,” Phys. Rev. B 35, 723733 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.723
32.
32.N. Q. Khanh and N. M. Quan, “Transport properties of a quasi-two-dimensional electron gas in a SiGe/Si/SiGe quantum well including temperature and magnetic field effects,” Superlattices Microst. 64, 245250 (2013).
http://dx.doi.org/10.1016/j.spmi.2013.09.036
33.
33.T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys. 54, 437672 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.437
34.
34.E. H. Hwang and S. Das Sarma, “Screening-theory-based description of the metallic behavior in Si/SiGe two-dimensional electron systems,” Phys. Rev. B 72, 085455 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085455
35.
35.C. M. Tanner, Y.-C. Perng, C. Frewin, S. E. Saddow, and J. P. Chang, “Electrical performance of Al2O3 gate dielectric films deposited by atomic layer deposition on 4H-SiC,” Appl. Phys. Lett. 91, 203510 (2007).
http://dx.doi.org/10.1063/1.2805742
36.
36.A. Gold, “Mobility of the non-polarized and the spin-polarized electron gas in Si/SiGe heterostructures: Remote impurities,” Europhys. Lett. 92, 67002 (2010).
http://dx.doi.org/10.1209/0295-5075/92/67002
37.
37.A. Gold, “Metal-insulator transition in AlxGa1−xAs/GaAs heterostructures with large spacer width,” Phys. Rev. B 44, 88188824 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.8818
38.
38.A. Gold, “Mobility and metal–insulator transition of the two-dimensional electron gas in SiGe/Si/SiGe quantum wells,” J. Appl. Phys. 108, 063710 (2010).
http://dx.doi.org/10.1063/1.3482058
39.
39.T. M. Lu, C.-H. Lee, S.-H. Huang, D. C. Tsui, and C. W. Liu, “Upper limit of two-dimensional electron density in enhancement-mode Si/SiGe heterostructure field-effect transistors,” Appl. Phys. Lett. 99, 153510 (2011).
http://dx.doi.org/10.1063/1.3652909
40.
40.C.-T. Huang, J.-Y. Li, K. S. Chou, and J. C. Sturm, “Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer,” Appl. Phys. Lett. 104, 243510 (2014).
http://dx.doi.org/10.1063/1.4884650
41.
41.S. D. Sarma, E. Hwang, S. Kodiyalam, L. Pfeiffer, and K. West, “Transport in two-dimensional modulation-doped semiconductor structures,” Phys. Rev. B 91, 205304 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.205304
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933026
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933026
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933026
2015-10-07
2016-09-28

Abstract

We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ∼ 100 nm to ∼ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, , is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by ∼ 2.3. At the highest achievable densities in the quantum wells buried at intermediate depth, an exponent ∼ 5 is observed. We propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933026.html;jsessionid=aVYk-HDOUruXNnIBWoEPR8XB.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933026&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933026&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933026'
Right1,Right2,Right3,