Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933052
1.
1.P. Blaha, K. Schwarz, and P. Herzig, Physical Review Letters 54, 1192 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1192
2.
2.R. Fracchia, G. Barrera, and N. Allan, Journal of Physics and Solids 59, 435 (1998).
http://dx.doi.org/10.1016/S0022-3697(97)00208-4
3.
3.W. Frank, U. Breier, C. Elsässer, and M. Fähnle, Physical review letters 77, 518 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.518
4.
4.M. Catti, Physical Review B 61, 1795 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.1795
5.
5.A. Van der Ven, G. Ceder, M. Asta, and P. Tepesch, First-principles theory of ionic diffusion with nondilute carriers, (2001).
6.
6.Y. Koyama, Y. Yamada, I. Tanaka, S. R. Nishitani, H. Adachi, M. Murayama, and R. Kanno, Mater. Trans. 43, 1460 (2002).
http://dx.doi.org/10.2320/matertrans.43.1460
7.
7.V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Physical review letters 88, 075506 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.075506
8.
8.M. V. Koudriachova, N. M. Harrison, and S. W. de Leeuw, Physical Review B 65, 235423 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.235423
9.
9.M. V. Koudriachova, N. M. Harrison, and S. W. D. Leeuw, Solid State Ionics 157, 35 (2003).
http://dx.doi.org/10.1016/S0167-2738(02)00186-8
10.
10.I. Kishida, Y. Koyama, A. Kuwabara, T. Yamamoto, F. Oba, and I. Tanaka, The Journal of Physical Chemistry B 110, 8258 (2006).
http://dx.doi.org/10.1021/jp0559229
11.
11.I. Kishida, F. Oba, Y. Koyama, A. Kuwabara, and I. Tanaka, Physical Review B - Condensed Matter and Materials Physics 80, 24116 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.024116
12.
12.G. Mills, H. Jónsson, and G. K. Schenter, Surface Science 324, 305 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00731-4
13.
13.G. Henkelman, H. Jo, and I. Introduction, The Journal of Chemical Physics 113, 9978 (2000).
http://dx.doi.org/10.1063/1.1323224
14.
14.X. Ke and I. Tanaka, Physical Review B 69, 165114 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.165114
15.
15.H. Moriwake, A. Kuwabara, C. A. J. Fisher, R. Huang, T. Hitosugi, Y. H. Ikuhara, H. Oki, and Y. Ikuhara, Advanced materials (Deerfield Beach, Fla.) 25, 618 (2013).
http://dx.doi.org/10.1002/adma.201202805
16.
16.G. Kresse and J. Hafner, Physical Review B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
17.
17.J. Sarnthein, K. Schwarz, and P. Blöchl, Physical review. B, Condensed matter 53, 9084 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.9084
18.
18.C. Ouyang, S. Shi, Z. Wang, X. Huang, and L. Chen, “First-principles study of Li ion diffusion in LiFePO4” (2004).
19.
19.C. Moysés Araújo, A. Blomqvist, R. Scheicher, P. Chen, and R. Ahuja, “Superionicity in the hydrogen storage material Li2NH: Molecular dynamics simulations” (2009).
20.
20.Y. Mo and S. P. Ong, Chemistry Of Materials 24, 15 (2012).
http://dx.doi.org/10.1021/cm203303y
21.
21.K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K. Shitara, C. A. J. Fisher, H. Moriwake, and I. Tanaka, Advanced Energy Materials 3, 980 (2013).
http://dx.doi.org/10.1002/aenm.201300060
22.
22.R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, and K. Kanamura, Chemistry of Materials 25, 425 (2013).
http://dx.doi.org/10.1021/cm303542x
23.
23.A. Bortz, M. Kalos, and J. Lebowitz, Journal of Computational Physics 17, 10 (1975).
http://dx.doi.org/10.1016/0021-9991(75)90060-1
24.
24.L. Xu and G. Henkelman, The Journal of Chemical Physics 129, 114104 (2008).
http://dx.doi.org/10.1063/1.2976010
25.
25.M. W. Barsoum, Fundamentals of Ceramics (Series in Material Science and Engineering) (CRC Press, 2002).
26.
26.R. Gritzmann, Peter , and Brandenberg , Das Geheimnis des kürzesten Weges (Springer Boston, 2005).
27.
27.P. Vashishta and A. Rahman, Physical Review Letters 40, 1337 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.1337
28.
28.I. Abrahams, P. G. Bruce, A. R. West, and W. I. F. David, Journal of Solid State Chemistry 75, 390 (1988).
http://dx.doi.org/10.1016/0022-4596(88)90179-X
29.
29.R. Agrawal, K. Kathal, and R. Gupta, Solid State Ionics 74, 137 (1994).
http://dx.doi.org/10.1016/0167-2738(94)90203-8
30.
30.S. Hull, Reports on Progress in Physics 67, 1233 (2004).
http://dx.doi.org/10.1088/0034-4885/67/7/R05
31.
31.R. Cava, F. Reidinger, and B. Wuensch, Solid State Communications 24, 411 (1977).
http://dx.doi.org/10.1016/0038-1098(77)91306-0
32.
32.S.-r. Sun and D.-g. Xia, Solid State Ionics 179, 2330 (2008).
http://dx.doi.org/10.1016/j.ssi.2008.09.028
33.
33.M. J. Cooper and M. Sakata, “The interpretation of neutron powder diffraction measurements on α-AgI” (1979).
34.
34.P. Hohenberg and W. Kohn, Physical Review 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
35.
35.W. Kohn and L. J. Sham, Physical Review 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
36.
36.P. E. Blöchl, Physical Review B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
37.
37.G. Kresse and J. Hafner, Physical Review B 48, 13115 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
38.
38.G. Kresse and J. Furthmüller, Physical review B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
39.
39.G. Kresse and D. Joubert, Physical Review B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
40.
40.J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
41.
41.S. R. Hall, F. H. Allen, and I. D. Brown, “The crystallographic information file (CIF): a new standard archive file for crystallography” (1991).
42.
42.See supplementary material at http://dx.doi.org/10.1063/1.4933052 for animation of conduction process along minimum energy path.[Supplementary Material]
43.
43.D. Bucher, L. C. T. Pierce, J. A. McCammon, and P. R. L. Markwick, Journal of Chemical Theory and Computation 7, 890 (2011).
http://dx.doi.org/10.1021/ct100605v
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933052
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933052
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933052
2015-10-07
2016-12-09

Abstract

A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to -AgI and the ionic conduction mechanism in -AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933052.html;jsessionid=KNyLTD7qBL0UT0okaoFSPcyW.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933052&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933052&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933052'
Right1,Right2,Right3,