Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933053
1.
1.P. C. Juan, J. L. Wang, T. Y. Hsieh, C. L. Lin, C. M. Yang, and D. C. Shye, Microelectron. Eng. 138, 86 (2015).
http://dx.doi.org/10.1016/j.mee.2015.02.027
2.
2.D. Mao, I. Mejia, A. L. Salas-Villasenor, M. Singh, H. Stiegler, B. E. Gnade, and M. A. Quevedo-Lopez, Org. Electron. 14, 505 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.10.035
3.
3.P. Muralt, J. Micromech. Microeng. 10, 136 (2000).
http://dx.doi.org/10.1088/0960-1317/10/2/307
4.
4.H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, Sens. Actuators A 179, 121 (2012).
http://dx.doi.org/10.1016/j.sna.2012.02.031
5.
5.N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).
http://dx.doi.org/10.1063/1.2336999
6.
6.S. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm, M. V. Ramana Murty, O. Auciello, G. R. Bai, and G. B. Stephenson, Phys. Rev. Lett. 89, 067601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.067601
7.
7.D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Science 304, 1650 (2004).
http://dx.doi.org/10.1126/science.1098252
8.
8.L. Hong, A. K. Soh, Y. C. Song, and L. C. Lim, Acta Mater. 56, 2966 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.02.034
9.
9.H. L. Hu and L. Q. Chen, Mater. Sci. Eng. A 238, 182 (1997).
http://dx.doi.org/10.1016/S0921-5093(97)00453-X
10.
10.L. Chen, J. Ouyang, C. S. Ganpule, V. Nagarajan, R. Ramesh, and A. L. Roytburd, Appl. Phys. Lett. 84, 254 (2004).
http://dx.doi.org/10.1063/1.1633970
11.
11.V. Nagarajan, J. Junquera, J. Q. He, C. L. Jia, R. Waser, K. Lee, Y. K. Kim, S. Baik, T. Zhao, R. Ramesh, Ph. Ghosez, and K. M. Rabe, J. Appl. Phys. 100, 051609 (2006).
http://dx.doi.org/10.1063/1.2337363
12.
12.C. Lichtensteiger, M. Dawber, N. Stucki, J. M. Triscone, J. Hoffman, J. B. Yau, C. H. Ahn, L. Despont, and P. Aebi, Appl. Phys. Lett. 90, 052907 (2007).
http://dx.doi.org/10.1063/1.2433757
13.
13.I. I. Naumov, L. Bellaiche, and H. Fu, Nature 432, 737 (2004).
http://dx.doi.org/10.1038/nature03107
14.
14.W. J. Chen, Y. Zheng, B. Wang, D. C. Ma, and F. R. Ling, Phys. Chem. Chem. Phys. 15, 7277 (2013).
http://dx.doi.org/10.1039/c3cp00133d
15.
15.J. Wang and T. Y. Zhang, Phys. Rev. B 73, 144107 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.144107
16.
16.J. Wang, M. Kamlah, and T. Y. Zhang, J. Appl. Phys. 105, 014104 (2009).
http://dx.doi.org/10.1063/1.3043576
17.
17.J. Wang and T. Y. Zhang, Appl. Phys. Lett. 88, 182904 (2006).
http://dx.doi.org/10.1063/1.2196471
18.
18.J. Wang and T. Y. Zhang, Phys. Rev. B 77, 014104 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.014104
19.
19.Z. D. Zhou, C. Z. Zhang, and Q. Jiang, Chin. Phys. B 20, 107701 (2011).
http://dx.doi.org/10.1088/1674-1056/20/10/107701
20.
20.J. Wang and T. Y. Zhang, ICCES 3, 1 (2007).
21.
21.B. Li, J. B. Wang, X. L. Zhong, F. Wang, Y. K. Zeng, and Y. C. Zhou, RSC Adv. 3, 7928 (2013).
http://dx.doi.org/10.1039/c3ra41252k
22.
22.D. C. Ma, Y. Zheng, and C. H. Woo, Acta Mater. 57, 4736 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.06.032
23.
23.W. J. Chen, Y. Zheng, B. Wang, and J. Y. Liu, J. Appl. Phys. 115, 214106 (2014).
http://dx.doi.org/10.1063/1.4881530
24.
24.L. Hong, A. K. Soh, S. Y. Liu, and L. Lu, J. Phys. D: Appl. Phys. 42, 122005 (2009).
http://dx.doi.org/10.1088/0022-3727/42/12/122005
25.
25.J. Wang, M. Kamlah, and T. Y. Zhang, Acta Mech. 214, 49 (2010).
http://dx.doi.org/10.1007/s00707-010-0322-9
26.
26.F. Xue, J. J. Wang, G. Sheng, E. Huang, Y. Cao, H. H. Huang, P. Munroe, R. Mahjoub, Y. L. Li, V. Nagarajan, and L. Q. Chen, Acta Mater. 61, 2909 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.01.038
27.
27.A. K. Soh, Y. C. Song, and Y. Ni, J. Am. Ceram. Soc. 89, 652 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2005.00724.x
28.
28.Q. Y. Qiu, R. Mahjoub, S. P. Alpay, and V. Nagarajan, Acta Mater. 58, 823 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.09.060
29.
29.J. Ouyang and A. L. Roytburd, Acta Mater. 54, 531 (2006).
http://dx.doi.org/10.1016/j.actamat.2005.09.029
30.
30.O. G. Vendik and S. P. Zubko, J. Appl. Phys. 88, 5343 (2000).
http://dx.doi.org/10.1063/1.1317243
31.
31.H. T. Chen, A. K. Soh, and Y. Ni, Acta Mech. 225, 1323 (2014).
http://dx.doi.org/10.1007/s00707-013-1045-5
32.
32.Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett. 81, 427 (2002).
http://dx.doi.org/10.1063/1.1492025
33.
33.J. Wang, M. Kamlah, T. Y. Zhang, Y. Li, and L. Q. Chen, Appl. Phys. Lett. 92, 162905 (2008).
http://dx.doi.org/10.1063/1.2917715
34.
34.T. H. Hao and Z. Y. Shen, Eng. Fract. Mech. 47, 793 (1994).
http://dx.doi.org/10.1016/0013-7944(94)90243-7
35.
35.Y. L. Tang, Y. L. Zhu, X. L. Ma, A. Y. Borisevich, A. N. Morozovska, E. A. Eliseev, W. Y. Wang, Y. J. Wang, Y. B. Xu, Z. D. Zhang, and S. J. Pennycook, Science 348, 547 (2015).
http://dx.doi.org/10.1126/science.1259869
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933053
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933053
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933053
2015-10-07
2016-12-03

Abstract

A two-dimensional phase field simulation of ferroelectric films is used that incorporates Landau-Devonshire energy, gradient energy and depolarization electrical energy. A new intermediate electrical boundary condition is firstly presented to study the effects on domain structures of ferroelectric films. Two-dimensional simulations of domain structures are carried out under the open circuit (OC), short circuit (SC) and intermediate (IM) electrical boundary conditions. The simulation results show that there are multi-vortices domains and 180° multi-stripes domains under OC and SC electrical boundary condition, respectively. And there is a transition from multi-vortices domains to 180° multi-stripes domains under the IM electrical boundary condition due to competition between the elastic energy and depolarization electrical energy in the films. The present IM electrical boundary condition can completely characterize different degrees of compensation for surface charges by the electrodes and further describe the effect on the depolarization electrical energy. It can also be reduced to OC and SC electrical boundary conditions. Hence, for nano-thin ferroelectric films, the IM electrical boundary condition plays an important role in the formation of domain structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933053.html;jsessionid=4XTaN1e3RV2O99nTctH-0A3W.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933053&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933053&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933053'
Right1,Right2,Right3,