Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933075
1.
1.R. F. Zhuo, H. T. Feng, D. Yan, J. T. Chen, J. J. Feng, J. Z. Liu, and P. X. Yan, J Cryst Growth 310, 3240 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.03.028
2.
2.M. D. Himel, J. A. Ruffner, and U. J. Gibson, Appl Opt 27, 2810 (1988).
http://dx.doi.org/10.1364/AO.27.002810
3.
3.A. H. Eid, S. M Salim, M. B Sedik, H. Omar, T. Dahy, and H. M. Abou elkhair, J Appl Sci Res 6, 777 (2010).
4.
4.S. K. Mandal, S. Chaudhuri, and A. K. Pal, Thin Solid Films 350, 209 (1999).
http://dx.doi.org/10.1016/S0040-6090(99)00236-9
5.
5.D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, and Y. G. Son, Nanoscale Res. Lett 7, 26 (2012).
http://dx.doi.org/10.1186/1556-276X-7-26
6.
6.J. Fang, P. H. Holloway, J. E. Yu, K. S. Jones, B. Pathangey, E. Bretschneider, and T. J. Anderson, Appl Surf Sci 70/71, 701 (1993).
http://dx.doi.org/10.1016/0169-4332(93)90605-B
7.
7.K. Uchino, K. Ueyama, M. Yamamoto, H. Kariya, H. Miyata, H. Misasa, M. Kitagawa, and H. Kobayashi, J Appl Phys 87, 4249 (2000).
http://dx.doi.org/10.1063/1.373061
8.
8.W. Tang and D. C. Cameron, Thin Solid Films 280, 221 (1996).
http://dx.doi.org/10.1016/0040-6090(95)08198-4
9.
9.H. Abdullah, N. Saadah, and S. Shaari, World Appl Sci J 19, 1087 (2012).
10.
10.D. Kurbatov, A. Opanasyuk, S. Kshnyakina, V. Melnik, and V. Nesprava, Rom Journ Phys 55, 213 (2010).
11.
11.K. M. Yeung, W. S. Tsang, C. L. Mark, and H. Wong, J Appl Phys 92, 3636 (2002).
http://dx.doi.org/10.1063/1.1503389
12.
12.S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, and V.P. Mahadevan Pillai, J. Lumin 132, 944 (2012).
http://dx.doi.org/10.1016/j.jlumin.2011.10.017
13.
13.S. Chellammal, S. Sankar, R. Murugaraj, S. Selvakumar, E. Viswanathan, and K. Sivaji, J Mater Sci 45, 6701 (2010).
http://dx.doi.org/10.1007/s10853-010-4763-2
14.
14.R.K. Roy, S. Bandyopadhyaya, and A.K. Pal, Eur. Phys. J. B 39, 491 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00222-x
15.
15.A. Ranjgar, R. Norouzi, A. Zolanvari, and H. Sadeghi, Am J Phys 6, 198 (2013).
16.
16.Q. Zhang, Y. N. Tan, J. Xie, and J.Y. Lee, Plasmonics 4, 9 (2009).
http://dx.doi.org/10.1007/s11468-008-9067-x
17.
17.K. Matsuda, Y. Ito, and Y. Kanemitsu, Appl. Phys. Lett 92, 211911 (2008).
http://dx.doi.org/10.1063/1.2937142
18.
18.J. Sun, E. Hao, Y. Sun, X. Zhang, B. Yang, S. Zou, J. Shen, and S. Wang, Thin Solid Film 327–329, 528 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00703-2
19.
19.A. Jaiswal, P. Sanpui, A. Chattopadhyay, and S. S. Ghosh, Plasmonics 6, 125 (2011).
http://dx.doi.org/10.1007/s11468-010-9177-0
20.
20.N.R.J. Poolton, J Phys C Solid State Phys 20, 5867 (1987).
http://dx.doi.org/10.1088/0022-3719/20/34/020
21.
21.A. Murugadoss and Arunchattopadhyay, Bull Mater Sci 3, 533 (2008).
http://dx.doi.org/10.1007/s12034-008-0083-4
22.
22.S.I Ahn, Chem PhysLett 528, 49 (2012).
23.
23.M. Pal, U. Pal, J.M.G.Y. Jiménez, and F.P. Rodríguez, Nanoscale Res Lett 7, 1 (2012) (12pp).
http://dx.doi.org/10.1186/1556-276X-7-1
24.
24.K. Nagamani, N. Revathi, P. Prathap, Y. Lingappa, and K.T. Ramakrishna Reddy, Curr Appl Phys 12, 380 (2012).
http://dx.doi.org/10.1016/j.cap.2011.07.031
25.
25.D.B. Cullity, Elements of X-Ray Diffraction (Addison-Wesley publishing company, Massachusetts, USA, 1956).
26.
26.I. Navas, S. Sreeja, H. Kohler, P. Reji, R. Vinodkumar, and V. P. MahadevanPillai, J Phys Chem C 117, 7818 (2013).
27.
27.R. Koch, J.Phys:Condens.Matter 6, 9519 (1994).
http://dx.doi.org/10.1088/0953-8984/6/45/005
28.
28.S. Simi, I. Navas, R. Vinodkumar, S. R. Chalana, M. Gangrade, V. Ganesan, and V. P. MahadevanPillai, Appl Surf Sci 257, 9269 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.04.140
29.
29.J. A. Najim and J. M. Rozaiq, ILCPA 10(2), 137 (2013).
http://dx.doi.org/10.18052/www.scipress.com/ILCPA.15.137
30.
30.R. Jolly Bose, R. Vinod Kumar, S. K. Sudheer, V. R. Reddy, and V. Ganesan, J Appl Phys 112, 114311 (2012).
http://dx.doi.org/10.1063/1.4768206
31.
31.O. Brafman and S. S. Mitra, Phys Rev 171, 931 (1968).
http://dx.doi.org/10.1103/PhysRev.171.931
32.
32.Y. C. Cheng, C. Q. Jin, F. Gao, X. L Wu, and W. Zhong, J Appl Phys 106, 123505 (2009).
http://dx.doi.org/10.1063/1.3270401
33.
33.C. Bi, L. Pan, M. Xu, J. Yin, Z. Guo, L. Qin, H. Zhu, and J. H. Xiao, Chem Phys Lett 481, 220 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.09.089
34.
34.Q. Xiong, J. Wang, O. Reese, L. C. Lew Yan Voon, and P. C. Eklund, Nano Lett 4, 1991 (2004).
http://dx.doi.org/10.1021/nl048720h
35.
35.M. Lin, T. Sudhiranjan, C. Boothroyd, and K. P. Loh, Chem Phys Lett 400, 175 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.10.115
36.
36.J. H. Kim, H. Rho, J. Kim, Y. J. Choic, and J. G. Park, J Raman Spectrosc 43, 906 (2012).
http://dx.doi.org/10.1002/jrs.3116
37.
37.N. Mustapha, A. Hennache, and Z. Fekkai, BJAST 4(5), 739 (2014).
http://dx.doi.org/10.9734/BJAST/2014/6812
38.
38.T. C. R. Rocha, A. Oestereich, D. V. Demidov, M. Havecker, S. Zafeiratos, G. Weinberg, V. I. Buhtiyarov, A. K. Gericke, and R. Schlogl, Phys. Chem. Chem. Phys 14, 4554 (2012).
http://dx.doi.org/10.1039/c2cp22472k
39.
39.Z. luo, G. U. Gamboa, J. C. Smith, A.C. Reber, J. U. Reveles, S.N. Khanna, and A. W. Casteleman, Jr., J. Am. Chem. Soc 134, 18973 (2012).
http://dx.doi.org/10.1021/ja303268w
40.
40.S. H Mohamed, F. M. El-Hossary, G. A. Gamal, and M. M Kahlid, Acta Phys. Pol A 115(3), 704 (2009).
41.
41.S. Milz, J. Rensberg, C. Ronning, and W. Wesch, Nucl Instrum Methods Phys Res B 286, 67 (2012).
http://dx.doi.org/10.1016/j.nimb.2011.11.026
42.
42.D. M. Schaadt, B. Feng, and E. T. Yu, Appl Phys Lett 86, 063106 (2005).
http://dx.doi.org/10.1063/1.1855423
43.
43.J. I. Pankov, Optical process in semiconductors (Dover Publications, NewYork, 1971).
44.
44.J.R Rani, V. P. Mahadevan Pillai, R. S. Ajimsha, M. K. Jayaraj, and R. S. Jayasree, J Appl Phys 100, 014302 (2006).
http://dx.doi.org/10.1063/1.2209432
45.
45.K. Jayanthi, S. Chawla, H. Chander, and D. Haranath, Cryst Res Technol 42, 976 (2007).
http://dx.doi.org/10.1002/crat.200710950
46.
46.M. J. Pawar, S. D. Nimkar, P. P. Nandurkar, A. S. Tale, S. B. Deshmukh, and S. S. Chaure, Chalcogenide Lett 7, 139 (2010).
47.
47.V. Kumar, R. G. Singh, L. Purohit, and R. M. Mehra, J. Mater. Sci. Technol 27(6), 481 (2011).
http://dx.doi.org/10.1016/S1005-0302(11)60095-9
48.
48.Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu, and T. Yao, Appl.Phys 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
49.
49.MY Nadeem and W Ahmed, “Optical Properties of ZnS Thin Films,” Turk J Phy 24, 651-659 (2000).
50.
50.I. C. Ndukwe, Sol Energy Mater Sol Cells 40, 123 (1996).
http://dx.doi.org/10.1016/0927-0248(95)00074-7
51.
51.M. S. Kim, K. G. Yim, J. S. Son, and J. Y. Leem, Bull Korean Chem Soc 33, 1235 (2012).
http://dx.doi.org/10.5012/bkcs.2012.33.4.1235
52.
52.N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, Pramana J Phys 76, 519 (2011).
http://dx.doi.org/10.1007/s12043-011-0024-4
53.
53.R. Das and S. Pande, IJMS 1, 35 (2011).
54.
54.M. A. Majeed Khan, M. Wasi Khan, M. Alhoshan, M. S. AlSalhi, and A. S. Aldwayyan, Appl Phys A 100, 45 (2010).
http://dx.doi.org/10.1007/s00339-010-5840-8
55.
55.J. O. Akinlami, Res J Phys 8, 17 (2014).
http://dx.doi.org/10.3923/rjp.2014.17.27
56.
56.C. Yang, Y. Zhou, G. An, and X. Zhao, Opt Mater 35, 2551 (2013).
http://dx.doi.org/10.1016/j.optmat.2013.07.023
57.
57.M. Taherian, A. A. Sabbagh Alvani, M. A. Shokrgozar, R. Salimi, S. Moosakhani, H. Sameie, and F. Tabatabaee, Electron Mater Lett 10, 393 (2014).
http://dx.doi.org/10.1007/s13391-013-3211-2
58.
58.X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, EPL 93, 57009 (2011).
http://dx.doi.org/10.1209/0295-5075/93/57009
59.
59.M. Liu, R. Chen, G. Adamo, K. F. MacDonald, E. J. Sie, T. C. Sum, N. I. Zheludev, H. Sun, and H. J. Fan, Nanophotonics 2(2), 153 (2013).
http://dx.doi.org/10.1515/nanoph-2012-0040
60.
60.Z. Guan, L. Polavarapu, and Q. H. Xu, Langmuir 26, 18020 (2010).
http://dx.doi.org/10.1021/la103668k
61.
61.D. R. Jung, J. Kim, C Nahm, S. Nam, J. I. Kim, and B. Park, Mater. Res. Bull 47, 453 (2012).
http://dx.doi.org/10.1016/j.materresbull.2011.10.025
62.
62.C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C Sum, H. D. Sun, and H. J. Fana, Appl Phys Lett 96, 071107 (2010).
http://dx.doi.org/10.1063/1.3323091
63.
63.G. Rajan and K. G Gopchandran, J Optoelectron Adv Mater 11, 590 (2009).
64.
64.X. Li, Y. Zhang, and X. Ren, Opt Express 17, 8735 (2009).
http://dx.doi.org/10.1364/OE.17.008735
65.
65.L. Kumar, R. Medwal, P. Sen, and S. Annapoorni, Mater Res Express 1, 015045 (2014).
http://dx.doi.org/10.1088/2053-1591/1/1/015045
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933075
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933075
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933075
2015-10-07
2016-12-09

Abstract

Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region) due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933075.html;jsessionid=Z-AC7fa5VJu_WFb_GGHN4sGp.x-aip-live-06?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933075&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933075&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933075'
Right1,Right2,Right3,