Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933076
1.
1.P. Dutta, S. K. Maiti, and S. Karmakar, Org. Electron. 11, 1120 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.006
2.
2.T. Makarova and F. Palacio, Carbon-based Magnetism: An Overview of the Magnetism of Metal Free Carbon-based Compounds and Materials (Elsevier, 2006).
3.
3.N. Toshio, K. Tomoaki, M. Shigeki, O. Keishi, K. Kensuke, T. Takahiro, T. Yukihiro, I. Tamotsu, N. Sadafumi, and I. Katsuya, J. Am. Chem. Soc. 134, 18656 (2012).
http://dx.doi.org/10.1021/ja306260b
4.
4.N. J. Tao, Nat. Nanotechnol. 1, 173 (2006).
http://dx.doi.org/10.1038/nnano.2006.130
5.
5.H. Akpinar, J. T. Mague, M. A. Novak, J. R. Friedman, and P. M. Lahti, Cryst. Eng. Comm. 14, 1515 (2012).
http://dx.doi.org/10.1039/C1CE06096A
6.
6.N. A. Tuan, N. V. Thanh, L. H. Phuoc, and N. H. Sinh, IEEE Transactions on Magnetics 50, 2700304 (2014).
7.
7.R. I. Thomson, C. M. Pask, G. O. Lloyd, M. Mito, and J. M. Rawson, Chem. Eur. J. 18, 8629 (2012).
http://dx.doi.org/10.1002/chem.201200760
8.
8.H.-H. Fu, K.-L. Yao, and Z.-L. Liu, J. Phys. Chem. A 112, 6205 (2008).
http://dx.doi.org/10.1021/jp800554a
9.
9.A. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao et al., Nature 488, 485 (2012).
http://dx.doi.org/10.1038/nature11395
10.
10.Y. Takano, T. Taniguchi, H. Isobe, T. Kubo, Y. Morita, K. Yamamoto et al., J. Am. Chem. Soc. 124, 11122 (2002).
http://dx.doi.org/10.1021/ja0177197
11.
11.A. Ivanova, M. Baumgarten, S. Karabunarliev, and N. Tyutyulkov, Phys. Chem. Chem. Phys. 5, 4932 (2003).
http://dx.doi.org/10.1039/b309328j
12.
12.P. Esquinazi, A. Setzer, R. Höhne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk, and M. Lösche, Phys. Rev. B 66, 024429 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.024429
13.
13.P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han, and T. Butz, Phys. Rev. Lett. 91, 227201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.227201
14.
14.H. Xia, W. Li, Y. Song, X. Yang, X. Liu, M. Zhao, Y. Xia, C. Song, T. Wang, D. Zhu, J. Gong, and Z. Zhu, Adv. Mater. 20, 4679 (2008).
http://dx.doi.org/10.1002/adma.200801205
15.
15.S. Talapatra et al., Phys. Rev. Lett. 95, 097201 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.097201
16.
16.B. Delley, J. Chem. Phys. 92, 508 (1990).
http://dx.doi.org/10.1063/1.458452
17.
17.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18.S. Grimme, J. Comput. Chem. 25, 1463 (2004).
http://dx.doi.org/10.1002/jcc.20078
19.
19.R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
http://dx.doi.org/10.1063/1.1740588
20.
20.R. S. Mulliken, J. Chem. Phys. 23, 1841 (1955).
http://dx.doi.org/10.1063/1.1740589
21.
21.K. Yamaguchi, H. Fukui, and T. Fueno, Chemistry Letters 625628 (1986).
http://dx.doi.org/10.1246/cl.1986.625
22.
22.D. Bovi and L. Guidoni, Chemical Physics 137, 114107 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933076
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933076
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933076
2015-10-07
2016-12-08

Abstract

Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the CH (R) radical has a spin of ½. However, in its [R] dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R/D/R (with m = 3-10), were designed. Our calculated results show that charge transfer (Δ) between R radicals and the diamagnetic molecule D occurs with a mechanism of spin exchange () in stacks. The more electrons that transfer from R to D, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δ can be tailored by adjusting the electron affinity ( ) of D. The correlation between Δ, , m, and is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933076.html;jsessionid=W0viLRiUlyqAEWmyTC74ZdRV.x-aip-live-06?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933076&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933076&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933076'
Right1,Right2,Right3,