Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933086
1.
1.L. Ragni, A. Berardinelli, L. Vannini, C. Montanari, F. Sirr, and M. E. Guerzoni, J. Food Eng. 100, 125 (2010).
http://dx.doi.org/10.1016/j.jfoodeng.2010.03.036
2.
2.M. Boekel, V. Fogliano, N. Pellegrini, C. Stanton, G. Scholz, S. Lalljie et al., Mol. Nutr. Food Res. 54, 1215 (2010).
http://dx.doi.org/10.1002/mnfr.200900608
3.
3.J. Kuldiloke and M. N. Eshtiaghi, KMITL Sci. Tech. J. 8, 64 (2008).
4.
4.Q. S. Yu, C. Huang, F. H. Hsieh, H. Huff, and Y. Duan, J. Biomed. Mater. Res. 80B(1), 211 (2008).
http://dx.doi.org/10.1002/jbm.b.30586
6.
6.S. Toepfl, A. Mathys, V. Heinz, and D. Knorr, Food. Rev. Int. 22, 405 (2006).
http://dx.doi.org/10.1080/87559120600865164
7.
7.D. Knorr, B. I. Ade-Omowaye, and V. Heinz, P. Nutri. Soc. 61, 311 (2002).
http://dx.doi.org/10.1079/PNS2002162
8.
8.J. Raso and G. V. Barbosa-Cánovas, Crit. Rev. Food Sci. Nutr. 43, 265 (2003).
http://dx.doi.org/10.1080/10408690390826527
9.
9.G. Fridma, G. Friedma, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Process Polym. 5, 503 (2008).
http://dx.doi.org/10.1002/ppap.200700154
10.
10.R. Dorai and M. J. Kushner, J. Phys. D Appl. Phys. 36, 666 (2003).
http://dx.doi.org/10.1088/0022-3727/36/6/309
11.
11.S. Tajima and K. Komvopoulos, J. Appl. Phys. 101, 014307 (2007).
http://dx.doi.org/10.1063/1.2402033
12.
12.M. Strobel, M. C. Branch, M. Ulsh, R. S. Kapaun, S. Kirk, and C. S. Lyons, J. Adhes. Sci. Technol. 10, 515 (1996).
http://dx.doi.org/10.1163/156856196X00562
13.
13.H. H. Kim, G. Prieto, K. Takashima, S. Katsura, and A. Mizuno, J. Electrostat. 55, 25 (2002).
http://dx.doi.org/10.1016/S0304-3886(01)00182-6
14.
14.G. Tepper, R. Kessick, and D. Pestov, J. Appl. Phys. 102, 113305 (2007).
http://dx.doi.org/10.1063/1.2818364
15.
15.M. Moisan, J. Barbeau, M. C. Crevier, J. Pelletier, N. Philip, and B. Saoudi, Pure Appl. Chem. 74, 349 (2002).
http://dx.doi.org/10.1351/pac200274030349
16.
16.N. S. Panikov, S. Paduraru, and R. Crowe, IEEE Trans. Plasma Sci. 30, 1424 (2002).
http://dx.doi.org/10.1109/TPS.2002.804195
17.
17.G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, and G. Friedman, Plasma Chem. Plasma P. 27, 113 (2007).
http://dx.doi.org/10.1007/s11090-006-9038-y
18.
18.Y. Sun and Y. Qiu, IEEE T. Plasma Sci. 5, 1496 (2007).
http://dx.doi.org/10.1109/TPS.2007.905947
19.
19.S. Horikoshi, S. Sato, M. Abe, and N. Serpone, Ultrason Sonochem 18, 938 (2011).
http://dx.doi.org/10.1016/j.ultsonch.2011.01.003
20.
20.V. Joubert, C. Cheype, J. Bonnet, D. Parkan, J. P. Garnier, J. Teissie, and V. Blanckaert, Water Res 47, 1381 (2013).
http://dx.doi.org/10.1016/j.watres.2012.12.011
21.
21.H. S. Kim, Y.I. Cho, I. H. Hwang, D. H. Lee, D. J. Cho, A. Rabinovich, and A. Fridman, Separ Purif. Technol. 20, 423 (2013).
http://dx.doi.org/10.1016/j.seppur.2013.09.041
22.
22.B. R. Locke, M. Sat, P. Sunka, M. R. Hoffmann, and J. S. Chang, Ind. Eng. Chem. Res. 45, 882 (2006).
http://dx.doi.org/10.1021/ie050981u
23.
23.A. M. Loske, U. M. Alvarez, C. Hernández-Galicia, E. Castaño-Tostado, and F. E. Prieto, Innov. Food Sci. Emerg. 3, 321 (2002).
http://dx.doi.org/10.1016/S1466-8564(02)00031-0
24.
24.H. Zuckerman, Y. E. Krasik, and J. Felsteiner, Innov. Food Sci. Emerg. 3, 329-336 (2002).
http://dx.doi.org/10.1016/S1466-8564(02)00052-8
25.
25.U. Kogelschatz, Plasma Chem. Plasma P. 23, 1 (2003).
http://dx.doi.org/10.1023/A:1022470901385
26.
26.B. A. Niemira, J. Food. Sci. 171 (2012B).
27.
27.F. J. Critzer, K. Kelly-Wintenberg, S. L. South, and D. A. Golden, J. Food Prot. 70, 2290 (2007).
28.
28.F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, Food Control 21, 1194-1198 (2010).
http://dx.doi.org/10.1016/j.foodcont.2010.02.006
29.
29.B. A. Niemira and J. Sites, J. Food Prot. 71, 1357 (2008).
30.
30.M. K. Boudam, M. Moisan, B. Saoudi, C. Popovici, N. Gherardi, and F. Massines, J. Phys. D Appl. Phys. 39, 3494 (2006).
http://dx.doi.org/10.1088/0022-3727/39/16/S07
31.
31.A. Ferna’ndez, E. Noriega, and A. Thompson, Food Microbiol. 33, 24 (2013).
http://dx.doi.org/10.1016/j.fm.2012.08.007
32.
32.M. Mols, H. Mastwijk, G. M. Nierop, and T. Abee, J. Appl. Microbiol. 115, 689 (2013).
http://dx.doi.org/10.1111/jam.12278
33.
33.Y. Ma, G. Zhang, X. Shi, G. Xu, and Y. Yang, IEEE T Plasma Sci. 36, 1615 (2008).
http://dx.doi.org/10.1109/TPS.2008.917165
34.
34.N. K. KaushiK, Y. H. Kim, Y. G. Han, and E. H. Choi, Curr. Appl. Phys. 13, 176 (2013).
http://dx.doi.org/10.1016/j.cap.2012.07.002
35.
35.Y. S. Mok, J. H. Jo, H. J. Lee, H. T. Ahn, and J. T. Kim, Plasma Chem. Plasma P. 27, 51 (2007).
http://dx.doi.org/10.1007/s11090-006-9043-1
36.
36.D. S. Kim and Y. S. Park, J. Environ. Sci. 20, 623 (2011).
37.
37.S. Kanazawa, T. Furuki, T. Nakaji, S. Akamine, and R. Ichiki, J. Phys: Conference Series 418, 012102 (2013).
http://dx.doi.org/10.1088/1742-6596/418/1/012102
38.
38.Y. J. Hong, C. J. Nam, K. B. Song, G. S. Cho, H. S. Uhm, D. I. Choi, and E. H. Choi, J. Instrum. 7, C03046 (2012).
39.
39.S. Kanazawa, H. Tanaka, A. Kajiwara, T. Ohkubo, Y. Nomoto, M. Kocik, J. Mizeraczyk, and J. S. Chang, Thin Solid Films 515, 4266 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.02.046
40.
40.B Benstaali, D Moussa, A. Addou, and J. L. Brisset, Eur. Phys. J. Appl. Phys. 4, 171 (1998a).
http://dx.doi.org/10.1051/epjap:1998258
41.
41.B. Benstaali, D. Moussa, L. Sauvage, A. Addou, B. G. Cheron, and J. L. Brisset, Low Temperature Plasma Chemistry Hakone VI (Cork, Ireland, 1998), p. 148.
42.
42.M. Laroussi, Plasma Process Polym. 2, 391 (2005).
http://dx.doi.org/10.1002/ppap.200400078
43.
43.M. Laroussi and F. Leipold, Int. J. Mass Spectrom. 233, 8 (2004).
http://dx.doi.org/10.1016/j.ijms.2003.11.016
44.
44.S. Kanazawa, H. Kawano, S. Watanabe, T. Furuki, S. Akamine, R. Ichiki, T. Ohkubo, M. Kocik, and J. Mizeraczyk, Plasma Sources Sci. 20, 034010 (2011).
http://dx.doi.org/10.1088/0963-0252/20/3/034010
45.
45.A. A. Joshi, B. R. Locke, P. Arce, and W. C. Finney, J. Hazard. Mater. 41, 3 (1995).
http://dx.doi.org/10.1016/0304-3894(94)00099-3
46.
46.M. Sahni and B. R. Locke, Ind. Eng. Chem. Res. 45, 5819-5825 (2006).
http://dx.doi.org/10.1021/ie0601504
47.
47.W. Broadwater, R. Hoehn, and P. King, Appl. Environm. Microbiol. 26, 39 (1973).
48.
48.C. Faddis, US patent 52 66275 (1993).
49.
49.T. Ohmi, T. Isagawa, T. Imaoka, and I. Sugiyama, J. Electrochem. Soc. 139, 3336 (1992).
http://dx.doi.org/10.1149/1.2069075
50.
50.D. Dobrynin, G. Fridman, G. Friedman, and A. Fridman, New J. Phys. 11, 115020 (2009).
http://dx.doi.org/10.1088/1367-2630/11/11/115020
51.
51.D. Zhu, L. Jiang, R. L. Liu, P. Chen, L. Lang, J. W. Feng, S. J. Yuan, and D. Y. Zhao, Chemosphere 117, 506 (2014).
http://dx.doi.org/10.1016/j.chemosphere.2014.09.031
52.
52.E. S. Henl and S. Linn, J. Biol. Chem. 272, 19095 (1997).
http://dx.doi.org/10.1074/jbc.272.31.19095
53.
53.J. Imlay, S. Chin, and S. Linn, Science 240, 640 (1998).
http://dx.doi.org/10.1126/science.2834821
54.
54.E. M.C. Alexandre, T. R. S. Brandao, and C.L.M. Silva, Food Control 27, 362 (2012).
http://dx.doi.org/10.1016/j.foodcont.2012.04.012
55.
55.S. V. Haute, I. Tryland, A. Veys, and I. Sampers, Food Control 50, 173 (2015).
http://dx.doi.org/10.1016/j.foodcont.2014.08.028
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933086
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933086
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933086
2015-10-08
2016-09-28

Abstract

A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an O157:H7 suspension (8.0 log CFU/ml). O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in O157:H7 inactivation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933086.html;jsessionid=06Q4HEA444oJnxF8WeLXK3so.x-aip-live-06?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933086&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933086&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933086'
Right1,Right2,Right3,