Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933125
1.
1.L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12727
2.
2.L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16631
3.
3.G. J. Snider and E. S. Toberer, Nature Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
4.
4.M. Dresselhaus, G. Chen, M. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Advanced Materials 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
5.
5.J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 (2008).
http://dx.doi.org/10.1126/science.1159725
6.
6.B. Muralidharan and M. Grifoni, Phys. Rev. B 85, 155423 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155423
7.
7.N. Nakpathomkun, H. Q. Xu, and H. Linke, Phys. Rev. B 82, 235428 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.235428
8.
8.B. Sothmann, R. Sanchez, A. Jordan, and M. Buttiker, New J. Phys. 15, 095021 (2013).
http://dx.doi.org/10.1088/1367-2630/15/9/095021
9.
9.A. Agarwal and B. Muralidharan, Applied Physics Letters 105, 013104 (2014).
http://dx.doi.org/10.1063/1.4888859
10.
10.N. Mingo and D. A. Broido, Phys. Rev. Lett. 93, 246106 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.246106
11.
11.N. Mingo, Applied Physics Letters 84, 2652 (2004).
http://dx.doi.org/10.1063/1.1695629
12.
12.F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin, and L. Shi, Nano Letters 7, 1649 (2007) pMID: 17508772.
http://dx.doi.org/10.1021/nl0706143
13.
13.F. Zhou, A. L. Moore, M. T. Pettes, Y. Lee, J. H. Seol, Q. L. Ye, L. Rabenberg, and L. Shi, Journal of Physics D: Applied Physics 43, 025406 (2010).
http://dx.doi.org/10.1088/0022-3727/43/2/025406
14.
14.A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, Nature 451, 168 (2008).
http://dx.doi.org/10.1038/nature06458
15.
15.A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature Publishing Group 451, 163 (2008).
http://dx.doi.org/10.1038/nature06381
16.
16.B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
17.
17. Goldsmid, Introduction to Thermoelectricity (Springer, 2009).
18.
18.F. J. DiSalvo, Science 285, 703 (1999).
http://dx.doi.org/10.1126/science.285.5428.703
19.
19.A. Shakouri, Annual Review of Materials Research 41, 399 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100445
20.
20.A. N. Jordan, B. Sothmann, R. Sánchez, and M. Büttiker, Phys. Rev. B 87, 075312 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075312
21.
21.Y. Choi and A. N. Jordan, Physica E: Low-dimensional Systems and Nanostructures (2015).
22.
22.F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.217
23.
23.J. T. Muhonen, M. Meschke, and J. P. Pekola, Reports on Progress in Physics 75, 046501 (2012).
http://dx.doi.org/10.1088/0034-4885/75/4/046501
24.
24.M. Paulsson and S. Datta, Phys. Rev. B 67, 241403 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.241403
25.
25.P. Reddy, S.-Y. Jang, R. A. Segalman, and A. Majumdar, Science 315, 1568 (2007).
http://dx.doi.org/10.1126/science.1137149
26.
26.R. Kim, S. Datta, and M. S. Lundstrom, Journal of Applied Physics 105, 034506 (2009).
http://dx.doi.org/10.1063/1.3074347
27.
27.R. Yang, G. Chen, and M. S. Dresselhaus, Phys. Rev. B 72, 125418 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125418
28.
28.M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, S. Lee, O. Warschkow, L. C. L. Hollenberg, and G. Klimeck, Nature Nanotechnology 7, 242 (2012).
http://dx.doi.org/10.1038/nnano.2012.21
29.
29.C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323, 1026 (2009).
http://dx.doi.org/10.1126/science.1168294
30.
30.R. S. Whitney, Physical Review Letters 112, 130601 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.130601
31.
31.G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).
http://dx.doi.org/10.1073/pnas.93.15.7436
32.
32.T. E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 096601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.096601
33.
33.M. Esposito, K. Lindenberg, and C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.130602
34.
34.M. Esposito, K. Lindenberg, and C. V. den Broeck, EPL (Europhysics Letters) 85, 60010 (2009).
http://dx.doi.org/10.1209/0295-5075/85/60010
35.
35.M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.150603
36.
36.B. G. Streetman, Solid State Electronic Devices (4th Ed.) (Prentice-Hall, Inc., 1995).
37.
37.M. Ribeiro, L. R. C. Fonseca, and L. G. Ferreira, EPL 94, 27001 (2011).
http://dx.doi.org/10.1209/0295-5075/94/27001
38.
38.Y. Wang, F. Zahid, Y. Zhu, L. Liu, J. Wang, and H. Guo, Applied Physics Letters 102, 132109 (2013).
http://dx.doi.org/10.1063/1.4800845
39.
39.S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, 2005).
40.
40.G. Benenti, G. Casati, and C. Meja-Monasterio, New Journal of Physics 16, 015014 (2014).
http://dx.doi.org/10.1088/1367-2630/16/1/015014
41.
41.A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature Publishing Group 451, 163 (2008).
http://dx.doi.org/10.1038/nature06381
42.
42.A. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, Nature Publishing Group 451, 168 (2008).
http://dx.doi.org/10.1038/nature06458
43.
43.A. Balandin, A. Khitun, J. Liu, K. Wang, T. Borca-Tasciuc, and G. Chen, in Eighteenth International Conference on Thermoelectrics (1999), pp. 189192.
http://dx.doi.org/10.1109/ICT.1999.843365
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933125
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933125
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933125
2015-10-08
2016-10-01

Abstract

Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multi moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - , to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933125.html;jsessionid=G6q7EA_KgZkpuomFRD5SPESQ.x-aip-live-02?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933125&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933125&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933125'
Right1,Right2,Right3,