Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, J.C.S. Chemical Communication 578 (1977).
2.B. Wessling, Synth. Met. 85, 1313 (1977).
3.T. Fernández Otero and H. Jürgen Grande, in Handbook of Conducting Polymers, edited byT. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds (Marcel Dekker, New York, 1998), Vol. I, Chap. 36, p. 1015.
4.R. S. Kohlman, A. Zibold, D. B. tanner, G. G. Ihas, T. Ishiguro, Y. G. Min, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev. Lett. 78, 3915 (1997).
5.S. Kivelson and A. J. Heeger, Synth. Met. 22, 371 (1998).
6.C. K. Chiang, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).
7.B. Liu, H. Shioyama, H. Jiang, X. Zhang, and Q. Xu, Carbon 48, 456 (2010).
8.J. Heinze, B.A. Fontana-Uribe, and S. Ludwigs, Chem. Rev. 110, 4724 (2010).
9.S. Cuenot, S. D. Champagne, and B. Nysten, Phys. Rev. Lett. 85, 1690 (2000).
10.E. Song and J.-W. Choi, Nanomaterials 3, 498 (2013) and references therein.
11.Y. Ali, V. Kumar, R. G. Sonkawade, and A. S. Dhaliwal, Adv. Mater. Lett. 3, 388 (2012).
12.C. Scho1nenberger, B. M. I. van der Zande, L. G. J. Fokkink, M. Henny, C. Schmid, M. Kru1ger, A. Bachtold, R. Huber, H. Birk, and U. Staufer, J. Phys. Chem. B 101, 5497 (1997).
13.J. E. Frommer and R. R. Chance, Electrically Conductive polymers, Encyclopaedia of Polymer Science and Engineering (John Wiley & Sons, New York, 1986), Vol. 5, p. 462.
14.G. G. Wallace, G. Tsekouras, and C. Wang, Wiley-VCH Chapter 11, 215 (2010).
15.J. Heinze, B.A. Fontana-Uribe, and S. Ludwigs, Chem. Rev. 110, 4724 (2010).
16.For a review please see, S. Roth, W. Graupner, and P. McNeillis, Acta Phys. Pol. 87, 699 (1995).
17.M. Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray, and A. H. Windle, Chem. Mater. 14, 1610 (2002).
18.M. Raicopol, A. Pruna, and L. Pilan, Journal of Chemistry 1 (2013), Article ID 367473.
19.B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York, 1999).
20.Q. Lu, Q. Zhao, H. Zhang, J. Li, X. Wang, and F. Wang, ACS Macro Lett. 2, 92 (2013).
21.A. Pan, H. B. Wu, L. Yu, and X. W. Lou, Angew. Chem. Int. Ed. 52, 2226 (2013).
22.S. J. Yang, S. Nam, T. Kim, J. H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, and C. R. Park, J. AM. Chem. Soc. 135, 7394 (2013).
23.N. Mahmood, C. Zhang, H. Yin, and Y. Hou, J. Mater. Chem. A 2, 15 (2014) and references therein.
24.P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).
25.M. Inagaki, H. Konno, and O. Tanaike, J. Power Sources 195, 7880 (2010).
26.E. Frackowiak and F. Bégun, Carbon 39, 937 (2001).
27.L. Hao, X. Li, and L. Zhi, Adv. Mater. 25, 3899 (2013).
28.S. Gupta, C. Price, and E. Heintzman, J. Nanosci. Nanotech. (in press, 2016).
29.S. Gupta, M. M. vanMeveren, and J. Jasinski, J. Electron. Mater. 44, 62 (2015) and references therein.
30.S. Gupta, M. M. vanMeveren, and J. Jasinski, Int. J. Electrochem. Sci. (2015) in press.
31.S. Gupta and S. B. Carrizosa, J. Electron. Mater. 44, 4492 (2015).
32.K. Wang, H. P. Wu, Y. N. Meng, and Z. X. Wei, Small 10, 14 (2014).
33.T. Y. Liu, L. Finn, M. H. Yu, H. Y. Wang, T. Zhai, X. H. Lu, Y. X. Tong, and Y. Li, Nano Lett. 14, 2522 (2014).
34.Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, and G. Q. Shi, ACS Nano 4, 1963 (2010).
35.L. Brunsweld, B. J. B. Folmer, E. W. Meijer, and R. P. Sijbesma, Chem. Rev. 101, 4071 (2001).
36.Scanning Electrochemical Microscopy, edited by A. J. Bard and M. V. Mirkin (Marcel Dekker, New York, 2001).
37.A. J. Bard and D.O. Wipf, J. Electrochem. Soc. 138, 469 (1991).
38.See supplementary material at for preparing materials namely, graphene oxide (GO), reduced GO, electrochemically reduced GO, electrochemically polymerized PAni and PPy and subsequently bilayer graphene hybrids.[Supplementary Material]
39.G. Eda and M. Chowalla, Adv. Mater. 22, 2392 (2010).
40.D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, Chem. Soc. Rev. 41, 6944 (2012).
41.F. Montilla, M. A. Cotarelo, and E. Morallon, J. Mater. Chem. 19, 305 (2009).
42.C. Tan, J. R. López, J.J. Parks, N.L. Ritzert, D. C. Ralph, and H.D. Abruňa, ACS Nano 6, 3070 (2012).
43.Y. Wang, K. Kececi, J. Velmurugan, and M. V. Mirkin, Chem. Sci. 4, 3606 (2013) and references therein.
44.R.L. Mcreery, Chem. Rev. 108, 2646 (2008).
45.C. Lefrou, J. Electroanal. Chem. 592, 103 (2006).
46.J. L. Amphlett and G. Denuault, J. Phys. Chem. B 102, 9946 (1998).
47.H. Shao and M. V. Mirkin, J. Phys. Chem. B 102, 9915 (1998).
48.P. Sun, F. O. Laforge, and M. V. Mirkin, Phys. Chem. Chem. Phys. 9, 802 (2007).

Data & Media loading...


Article metrics loading...



Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO), (PPy/ErGO), (PAni/GO) and (PPy/GO). The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, C, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent C of ≥350 F g−1 as compared with constituents (∼70 F g−1) at discharge current density of 0.3 A g−1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites density at solid/liquid interface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd