Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4933191
1.
1.(a) P. v. R. Schleyer, Chem. Rev. 101(5), 1115-1118 (2001);
http://dx.doi.org/10.1021/cr0103221
1.(b) K. B. Wiberg, Chem. Rev. 101(5), 1317-1332 (2001);
http://dx.doi.org/10.1021/cr990367q
1.(c) P. Lazzeretti, PCCP 6(2), 217-223 (2004).
http://dx.doi.org/10.1039/b311178d
2.
2.A. T. Balaban, D. C. Oniciu, and A. R. Katritzky, Chem. Rev. 104(5), 2777-2812 (2004).
http://dx.doi.org/10.1021/cr0306790
3.
3.S. Noorizadeh and E. Shakerzadeh, Phys. Chem. Chem. Phys 12(18), 4742-4749 (2010).
http://dx.doi.org/10.1039/b916509f
4.
4.T. M. Krygowski and M. K. Cyrański, Chem. Rev. 101(5), 1385-1420 (2001).
http://dx.doi.org/10.1021/cr990326u
5.
5.J. Poater, M. Duran, M. Solà, and B. Silvi, Chem. Rev. 105(10), 3911-3947 (2005).
http://dx.doi.org/10.1021/cr030085x
6.
6.Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. v. R. Schleyer, Chem. Rev. 105(10), 3842-3888 (2005).
http://dx.doi.org/10.1021/cr030088+
7.
7.M. K. Cyrański, Chem. Rev. 105(10), 3773-3811 (2005).
http://dx.doi.org/10.1021/cr0300845
8.
8.E. Matito, M. Duran, and M. Solà, J. Chem. Phys. 122(1), 014109 (2005).
http://dx.doi.org/10.1063/1.1824895
9.
9.(a) P. Bultinck, R. Ponec, and S. Van Damme, J. Phys. Org. Chem. 18(8), 706-718 (2005);
http://dx.doi.org/10.1002/poc.922
9.(b) D. R. Roy, P. Bultinck, V. Subramanian, and P. K. Chattaraj, J. Mol. Struc. (THEOCHEM) 854(1–3), 35-39 (2008).
http://dx.doi.org/10.1016/j.theochem.2007.12.042
10.
10.A. Misra, D. J. Klein, and T. Morikawa, J. Phys. Chem. A 113(6), 1151-1158 (2009).
http://dx.doi.org/10.1021/jp8038797
11.
11.E. Clar, The Aromatic Sextet (John Wiley & Sons, NY, 1970).
12.
12.A. Misra, T. G. Schmalz, and D. J. Klein, J. Chem. Inf. Model. 49(12), 2670-2676 (2009).
http://dx.doi.org/10.1021/ci900321e
13.
13.D. Bhattacharya, A. Panda, A. Misra, and D. J. Klein, J. Phys. Chem. A 118(24), 4325-4338 (2014).
http://dx.doi.org/10.1021/jp502235p
14.
14.M. K. Cyrañski, T. M. Krygowski, A. R. Katritzky, and P. v. R. Schleyer, J. Org. Chem. 67(4), 1333-1338 (2002).
http://dx.doi.org/10.1021/jo016255s
15.
15.T. M. Krygowski, M. K. Cyrañski, Z. Czarnocki, G. Häfelinger, and A. R. Katritzky, Tetrahedron 56(13), 1783-1796 (2000).
http://dx.doi.org/10.1016/S0040-4020(99)00979-5
16.
16.P. v. R. Schleyer and H. Jiao, Pure and Appl. Chem 68, 209-218 (1996).
17.
17.(a) M. J. S. Dewar, Tetrahedron 22, Supplement 8(0), 75-92 (1966);
http://dx.doi.org/10.1016/S0040-4020(01)82171-2
17.(b) F. Sondheimer, Pure and Appl. Chem 7, 363-388 (1963).
http://dx.doi.org/10.1351/pac196307020363
18.
18.(a) P. von RaguéSchleyer, H. Jiao, B. Goldfuss, and P. K. Freeman, Angew. Chem. Int. Ed. 34(3), 337-340 (1995);
http://dx.doi.org/10.1002/anie.199503371
18.(b) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. v. E. Hommes, J. Am. Chem. Soc. 118(26), 6317-6318 (1996).
http://dx.doi.org/10.1021/ja960582d
19.
19.C. Angeli and J.-P. Malrieu, J. Phys. Chem. A 112(45), 11481-11486 (2008).
http://dx.doi.org/10.1021/jp805870r
20.
20.L. Pauling, J. Chem. Phys. 1(4), 280-283 (1933).
http://dx.doi.org/10.1063/1.1749284
21.
21.M. K. Cyrański, P. v. R. Schleyer, T. M. Krygowski, H. Jiao, and G. Hohlneicher, Tetrahedron 59(10), 1657-1665 (2003).
http://dx.doi.org/10.1016/S0040-4020(03)00137-6
22.
22.R. Breslow and E. Mohacsi, J. Am. Chem. Soc. 85(4), 431-434 (1963).
http://dx.doi.org/10.1021/ja00887a013
23.
23.J.-P. Malrieu, C. Lepetit, M. Gicquel, J.-L. Heully, P. W. Fowler, and R. Chauvin, New J. Chem. 31(11), 1918-1927 (2007).
http://dx.doi.org/10.1039/b710550a
24.
24.(a) F. Dijkstra, J. H. Van Lenthe, R. W. A. Havenith, and L. W. Jenneskens, Int. J. Quantum Chem. 91(4), 566-574 (2003);
http://dx.doi.org/10.1002/qua.10529
24.(b) J. H. van Lenthe, R. W. A. Havenith, F. Dijkstra, and L. W. Jenneskens, Chem. Phys. Lett. 361(3–4), 203-208 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00873-4
25.
25.Y. Mo and S. D. Peyerimhoff, J. Chem. Phys. 109(5), 1687-1697 (1998).
http://dx.doi.org/10.1063/1.476742
26.
26.(a) Y. Mo, J. Phys. Chem. A 113(17), 5163-5169 (2009);
http://dx.doi.org/10.1021/jp808941h
26.(b) M. Zielinski, R. A. Havenith, L. Jenneskens, and J. van Lenthe, Theor. Chem. Acc. 127(1-2), 19-25 (2010).
http://dx.doi.org/10.1007/s00214-010-0793-8
27.
27.L. Pauling and J. Sherman, J. Chem. Phys. 1(8), 606-617 (1933).
http://dx.doi.org/10.1063/1.1749335
28.
28.W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (John Wiley &Sons NY, 1986).
29.
29.W. J. Hehre, R. T. McIver, J. A. Pople, and P. v. R. Schleyer, J. Am. Chem. Soc. 96(22), 7162-7163 (1974).
http://dx.doi.org/10.1021/ja00829a087
30.
30.J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermodynamical Data of Organic Compounds (Chapman & Hall, London, 1986).
31.
31.(a) W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am. Chem. Soc. 92(16), 4796-4801 (1970);
http://dx.doi.org/10.1021/ja00719a006
31.(b) J. B. Hess and L. Schaad, J. Am. Chem. Soc. 105(26), 7500-7505 (1983).
http://dx.doi.org/10.1021/ja00364a600
32.
32.J.-P. Malrieu, M. Gicquel, P. W. Fowler, C. Lepetit, J.-L. Heully, and R. Chauvin, J. Phys. Chem. A 112(50), 13203-13214 (2008).
http://dx.doi.org/10.1021/jp802839n
33.
33.A. R. Katritzky, K. Jug, and D. C. Oniciu, Chem. Rev. 101(5), 1421-1450 (2001).
http://dx.doi.org/10.1021/cr990327m
34.
34.P. W. Anderson, Phys. Rev. 111, 2-13 (1959).
http://dx.doi.org/10.1103/PhysRev.115.2
35.
35.S. Paul and A. Misra, J. Chem. Theory Comput. 8(3), 843-853 (2012).
http://dx.doi.org/10.1021/ct2006506
36.
36.R. M. White, Quantum Theory of Magnetism (Spinger, 2007).
37.
37.E. Huckel, Z. Phys. 70, 204286 (1931).
http://dx.doi.org/10.1007/BF01339530
38.
38.T. Kubar and M. Elstner, J. Roy. Soc. Interface 10, 20130415 (2013).
http://dx.doi.org/10.1098/rsif.2013.0415
39.
39.P. Jorgensen and J. Simons, Second Quantization Based Methods in Quantum Chemistry (Academic Press Inc., NY, 1981).
40.
40.P. Jordan and E. Wigner, Z. Physik 47(631), (1928).
41.
41.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865-3868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
42.
42.R. Improta, V. Barone, K. N. Kudin, and G. E. Scuseria, J. Am. Chem. Soc. 123(14), 3311-3322 (2001).
http://dx.doi.org/10.1021/ja003680e
43.
43.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (Gaussian, Inc., Wallingford, CT, USA, 2009).
44.
44.V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44(3), 943-954 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
45.
45.The DFT code, OPENMX, is available at http://www.openmx-square.org under the GNU General Public License.
46.
46.N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys. 84(4), 1419-1475 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1419
47.
47.H. Weng, T. Ozaki, and K. Terakura, arXiv:0902.1584v1 (cond-mat.mtrl-sci) (2009).
48.
48.N. Marzari and D. Vanderbilt, Phys. Rev. B 56(20), 12847-12865 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.12847
49.
49.K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett. 94(2), 026405 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.026405
50.
50.P.-O. Löwdin, Phys. Rev. 97(6), 1474-1489 (1955).
http://dx.doi.org/10.1103/PhysRev.97.1474
51.
51.F. Weinhold and C. R. Landis, Chemistry Education, Research and Practice in Europe. (2001).
52.
52.(a) J. P. Foster and F. Weinhold, J. Am. Chem. Soc. 102, 7211-7218 (1980);
http://dx.doi.org/10.1021/ja00544a007
52.(b) A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899-926 (1988);
http://dx.doi.org/10.1021/cr00088a005
52.(c) F. Weinhold and J. E. Carpenter, “The structure of small molecules and ions,” in The structure of small molecules and ions, edited by R. Naamam and Z. Vager (Plenum, 1988), p. 227.
53.
53.J. C. Santos, W. Tiznado, R. Contreras, and P. Fuentealba, J. Chem. Phys. 120(4), 1670-1673 (2004).
http://dx.doi.org/10.1063/1.1635799
54.
54.(a) A. Savin, B. Silvi, and F. Colonna, Can. J. Chem. 74, 1088-1096 (1996);
http://dx.doi.org/10.1139/v96-122
54.(b) A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed. 36(17), 1808-1832 (1997);
http://dx.doi.org/10.1002/anie.199718081
54.(c) P. K. Chattaraj, Aromaticity and Metal Clusters (CRC Press, 2010).
55.
55.J. C. Santos, J. Andreas, A. Aizman, and P. Fuentealba, J. Chem. Theor. Comput. 1, 83-86 (2005).
http://dx.doi.org/10.1021/ct0499276
56.
56.T. Lu and F. Chen, J. Comp. Chem. 33, 580-592 (2012).
http://dx.doi.org/10.1002/jcc.22885
57.
57.M. J. S. Dewar, Pure Appl. Chem. 44, 767-782 (1975).
http://dx.doi.org/10.1351/pac197544040767
58.
58.F. G. Bordwell, G. E. Drucker, and H. E. Fried, J. Org. Chem. 46, 632-635 (1981).
http://dx.doi.org/10.1021/jo00316a032
59.
59.J. L. Franklin, J. Am. Chem. Soc. 72, 4278-4280 (1950).
http://dx.doi.org/10.1021/ja01165a510
60.
60.L. Pauling and J. Sherman, J. Chem. Phys. 1, 606-617 (1933).
http://dx.doi.org/10.1063/1.1749335
61.
61.M. J. S. Dewar, Trans. Faraday Soc. 42, 764-767 (1946).
http://dx.doi.org/10.1039/tf9464200764
62.
62.(a) P. K. Chattaraj, D. R. Roy, P. K. Elango, and V. Subramanian, J. Phys. Chem. A 109, 9590-9597 (2005);
http://dx.doi.org/10.1021/jp0540196
62.(b) P. K. Chattaraj and D. R. Roy, J. Phys. Chem. A 111, 4684-4696 (2007);
http://dx.doi.org/10.1021/jp071030s
62.(c) S. Paul and A. Misra, Inorg. Chem. 50, 3234-3246 (2011).
http://dx.doi.org/10.1021/ic101658a
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4933191
Loading
/content/aip/journal/adva/5/10/10.1063/1.4933191
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4933191
2015-10-09
2016-09-30

Abstract

Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of -electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of -electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized -electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4933191.html;jsessionid=Jr9m2-DMa93qXYRpxk72Rw-o.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4933191&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4933191&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4933191'
Right1,Right2,Right3,