Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.(a) P. v. R. Schleyer, Chem. Rev. 101(5), 1115-1118 (2001);
1.(b) K. B. Wiberg, Chem. Rev. 101(5), 1317-1332 (2001);
1.(c) P. Lazzeretti, PCCP 6(2), 217-223 (2004).
2.A. T. Balaban, D. C. Oniciu, and A. R. Katritzky, Chem. Rev. 104(5), 2777-2812 (2004).
3.S. Noorizadeh and E. Shakerzadeh, Phys. Chem. Chem. Phys 12(18), 4742-4749 (2010).
4.T. M. Krygowski and M. K. Cyrański, Chem. Rev. 101(5), 1385-1420 (2001).
5.J. Poater, M. Duran, M. Solà, and B. Silvi, Chem. Rev. 105(10), 3911-3947 (2005).
6.Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. v. R. Schleyer, Chem. Rev. 105(10), 3842-3888 (2005).
7.M. K. Cyrański, Chem. Rev. 105(10), 3773-3811 (2005).
8.E. Matito, M. Duran, and M. Solà, J. Chem. Phys. 122(1), 014109 (2005).
9.(a) P. Bultinck, R. Ponec, and S. Van Damme, J. Phys. Org. Chem. 18(8), 706-718 (2005);
9.(b) D. R. Roy, P. Bultinck, V. Subramanian, and P. K. Chattaraj, J. Mol. Struc. (THEOCHEM) 854(1–3), 35-39 (2008).
10.A. Misra, D. J. Klein, and T. Morikawa, J. Phys. Chem. A 113(6), 1151-1158 (2009).
11.E. Clar, The Aromatic Sextet (John Wiley & Sons, NY, 1970).
12.A. Misra, T. G. Schmalz, and D. J. Klein, J. Chem. Inf. Model. 49(12), 2670-2676 (2009).
13.D. Bhattacharya, A. Panda, A. Misra, and D. J. Klein, J. Phys. Chem. A 118(24), 4325-4338 (2014).
14.M. K. Cyrañski, T. M. Krygowski, A. R. Katritzky, and P. v. R. Schleyer, J. Org. Chem. 67(4), 1333-1338 (2002).
15.T. M. Krygowski, M. K. Cyrañski, Z. Czarnocki, G. Häfelinger, and A. R. Katritzky, Tetrahedron 56(13), 1783-1796 (2000).
16.P. v. R. Schleyer and H. Jiao, Pure and Appl. Chem 68, 209-218 (1996).
17.(a) M. J. S. Dewar, Tetrahedron 22, Supplement 8(0), 75-92 (1966);
17.(b) F. Sondheimer, Pure and Appl. Chem 7, 363-388 (1963).
18.(a) P. von RaguéSchleyer, H. Jiao, B. Goldfuss, and P. K. Freeman, Angew. Chem. Int. Ed. 34(3), 337-340 (1995);
18.(b) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. v. E. Hommes, J. Am. Chem. Soc. 118(26), 6317-6318 (1996).
19.C. Angeli and J.-P. Malrieu, J. Phys. Chem. A 112(45), 11481-11486 (2008).
20.L. Pauling, J. Chem. Phys. 1(4), 280-283 (1933).
21.M. K. Cyrański, P. v. R. Schleyer, T. M. Krygowski, H. Jiao, and G. Hohlneicher, Tetrahedron 59(10), 1657-1665 (2003).
22.R. Breslow and E. Mohacsi, J. Am. Chem. Soc. 85(4), 431-434 (1963).
23.J.-P. Malrieu, C. Lepetit, M. Gicquel, J.-L. Heully, P. W. Fowler, and R. Chauvin, New J. Chem. 31(11), 1918-1927 (2007).
24.(a) F. Dijkstra, J. H. Van Lenthe, R. W. A. Havenith, and L. W. Jenneskens, Int. J. Quantum Chem. 91(4), 566-574 (2003);
24.(b) J. H. van Lenthe, R. W. A. Havenith, F. Dijkstra, and L. W. Jenneskens, Chem. Phys. Lett. 361(3–4), 203-208 (2002).
25.Y. Mo and S. D. Peyerimhoff, J. Chem. Phys. 109(5), 1687-1697 (1998).
26.(a) Y. Mo, J. Phys. Chem. A 113(17), 5163-5169 (2009);
26.(b) M. Zielinski, R. A. Havenith, L. Jenneskens, and J. van Lenthe, Theor. Chem. Acc. 127(1-2), 19-25 (2010).
27.L. Pauling and J. Sherman, J. Chem. Phys. 1(8), 606-617 (1933).
28.W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (John Wiley &Sons NY, 1986).
29.W. J. Hehre, R. T. McIver, J. A. Pople, and P. v. R. Schleyer, J. Am. Chem. Soc. 96(22), 7162-7163 (1974).
30.J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermodynamical Data of Organic Compounds (Chapman & Hall, London, 1986).
31.(a) W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am. Chem. Soc. 92(16), 4796-4801 (1970);
31.(b) J. B. Hess and L. Schaad, J. Am. Chem. Soc. 105(26), 7500-7505 (1983).
32.J.-P. Malrieu, M. Gicquel, P. W. Fowler, C. Lepetit, J.-L. Heully, and R. Chauvin, J. Phys. Chem. A 112(50), 13203-13214 (2008).
33.A. R. Katritzky, K. Jug, and D. C. Oniciu, Chem. Rev. 101(5), 1421-1450 (2001).
34.P. W. Anderson, Phys. Rev. 111, 2-13 (1959).
35.S. Paul and A. Misra, J. Chem. Theory Comput. 8(3), 843-853 (2012).
36.R. M. White, Quantum Theory of Magnetism (Spinger, 2007).
37.E. Huckel, Z. Phys. 70, 204286 (1931).
38.T. Kubar and M. Elstner, J. Roy. Soc. Interface 10, 20130415 (2013).
39.P. Jorgensen and J. Simons, Second Quantization Based Methods in Quantum Chemistry (Academic Press Inc., NY, 1981).
40.P. Jordan and E. Wigner, Z. Physik 47(631), (1928).
41.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865-3868 (1996).
42.R. Improta, V. Barone, K. N. Kudin, and G. E. Scuseria, J. Am. Chem. Soc. 123(14), 3311-3322 (2001).
43.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (Gaussian, Inc., Wallingford, CT, USA, 2009).
44.V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44(3), 943-954 (1991).
45.The DFT code, OPENMX, is available at under the GNU General Public License.
46.N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys. 84(4), 1419-1475 (2012).
47.H. Weng, T. Ozaki, and K. Terakura, arXiv:0902.1584v1 (cond-mat.mtrl-sci) (2009).
48.N. Marzari and D. Vanderbilt, Phys. Rev. B 56(20), 12847-12865 (1997).
49.K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett. 94(2), 026405 (2005).
50.P.-O. Löwdin, Phys. Rev. 97(6), 1474-1489 (1955).
51.F. Weinhold and C. R. Landis, Chemistry Education, Research and Practice in Europe. (2001).
52.(a) J. P. Foster and F. Weinhold, J. Am. Chem. Soc. 102, 7211-7218 (1980);
52.(b) A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899-926 (1988);
52.(c) F. Weinhold and J. E. Carpenter, “The structure of small molecules and ions,” in The structure of small molecules and ions, edited by R. Naamam and Z. Vager (Plenum, 1988), p. 227.
53.J. C. Santos, W. Tiznado, R. Contreras, and P. Fuentealba, J. Chem. Phys. 120(4), 1670-1673 (2004).
54.(a) A. Savin, B. Silvi, and F. Colonna, Can. J. Chem. 74, 1088-1096 (1996);
54.(b) A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed. 36(17), 1808-1832 (1997);
54.(c) P. K. Chattaraj, Aromaticity and Metal Clusters (CRC Press, 2010).
55.J. C. Santos, J. Andreas, A. Aizman, and P. Fuentealba, J. Chem. Theor. Comput. 1, 83-86 (2005).
56.T. Lu and F. Chen, J. Comp. Chem. 33, 580-592 (2012).
57.M. J. S. Dewar, Pure Appl. Chem. 44, 767-782 (1975).
58.F. G. Bordwell, G. E. Drucker, and H. E. Fried, J. Org. Chem. 46, 632-635 (1981).
59.J. L. Franklin, J. Am. Chem. Soc. 72, 4278-4280 (1950).
60.L. Pauling and J. Sherman, J. Chem. Phys. 1, 606-617 (1933).
61.M. J. S. Dewar, Trans. Faraday Soc. 42, 764-767 (1946).
62.(a) P. K. Chattaraj, D. R. Roy, P. K. Elango, and V. Subramanian, J. Phys. Chem. A 109, 9590-9597 (2005);
62.(b) P. K. Chattaraj and D. R. Roy, J. Phys. Chem. A 111, 4684-4696 (2007);
62.(c) S. Paul and A. Misra, Inorg. Chem. 50, 3234-3246 (2011).

Data & Media loading...


Article metrics loading...



Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of -electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of -electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized -electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd