Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J.J. Merkel, P. Plocica, S. Steffens, and B. Rech, Sol. Energy Mat. Sol. Cells 119, 112 (2013).
2.D. Van Gestel, I. Gordon, and J. Poortmans, Sol. Energy Mat. Sol. Cells 119, 261 (2013).
3.J.Y. Wang, Z. M. Wang, and E. J. Mittemeijer, J. Appl. Phys. 102, 113523 (2007).
4.O. Nast, S. Brehme, S. Pritchard, A. G. Aberle, and S. R. Wenham, Sol. Energy Mat. Sol. Cells 65, 385 (2001).
5.J. Schneider, A. Schneider, A. Sarikov, J. Klein, M. Muske, S. Gall, and W. Fuhs, J. Non-Cryst. Solids 352, 972 (2006).
6.S. Gall, M. Muske, I. Sieber, O. Nast, and W. Fuhs, J. Non-Cryst. Solids 299–302, 741 (2002).
7.O. Nast and A. J. Hartman, J. Appl. Phys. 88, 716 (2000).
8.E. Stinzianni, K. Dunn, Z. Zhao, M. Rane-Fondacaro, H. Efstathiadis, and P. Haldar, in 34th IEEE Photovolatic Specialists Conference, Philadelphia, USA (2009), p. 001643.
9.J. Schneider, J. Klein, M. Muske, S. Gall, and W. Fuhs, J. Non-Cryst. Solids 338–340, 127 (2004).
10.M. Stöger-Pollach, T. Walter, M. Muske, S. Gall, and P. Schattschneider, Thin Solid Films 515, 3740 (2007).
11.X. Zhai, R. Tan, W. Wang, J. Huang, F. Zhuang, S. Dai, and W. Song, J. Cryst. Growth 402, 99 (2014).
12.S. Muramatsu, R. Suzuki, L. Wei, and S. Tanigawa, Sol. Energy Mat. Sol. Cells 34, 525 (1994).
13.A. V. Shah, Thin-Film Silicon Solar Cells (EPFL Press, Lausanne, Switzerland, 2010).
14.G. Morell, R. S. Katiyar, S. Z. Weisz, and I. Balberg, J. Non-Cryst. Solids 194, 78 (1996).
15.P. Danesh, B. Pantchev, E. Liarokapis, and B. Schmidt, Journal of Mater. Sci.: Materials in Electronics 14, 753 (2003).
16.G. Morell, R. S. Katiyar, S. Z. Weisz, H. Jia, J. Shinar, and I. Balberg, J. Appl. Phys. 78, 5120 (1995).

Data & Media loading...


Article metrics loading...



In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AIC is diminished, leading larger poly-Si grain size.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd