Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
2.P. Bhattacharya and Z. Mi, Proc. IEEE 95, 1723 (2007).
3.A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, Semiconductors 46, 1225 (2012).
4.M. Ishida, M. Matsuda, Y. Tanaka, K. Takada, M. Ekawa, T. Yamamoto, T. Kageyama, M. Yamaguchi, K. Nishi, M. Sugawara, and Y. Arakawa, in Conference on Lasers and Electro-Optics 2012, San Jose, California, 2012. p. CM1I.2.
5.O. Qasaimeh and H. Khanfar, IEE Proc. Optoelectron. 151, 143 (2004).
6.C. S. Lee, P. Bhattacharya, T. Frost, and W. Guo, Appl. Phys. Lett. 98, 011103 (2011).
7.D. Arsenijevic, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, Appl. Phys. Lett. 104, 181101 (2014).
8.C. Wang, B. Lingnau, K. Ludge, J. Even, and F. Grillot, IEEE J. Quantum Electron 50, 723 (2014).
9.B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, Appl. Phys. Lett. 95, 061101 (2009).
10.M. A. Majid, D.T.D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, Appl. Phys. Lett. 99, 051101 (2011).
11.C. Y. Liu, H. Wang, Q. Q. Meng, B. Gao, and K. S. Ang, Appl. Phys. Express 6, 102702 (2013).
12.A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, Appl. Phys. Lett. 82, 1818 (2003).
13.P. F. Xu, H. M. Ji, J. L. Xiao, Y. X. Gu, Y. Z. Huang, and T. Yang, Opt. Lett. 37, 1298 (2012).
14.P. F. Xu, T. Yang, H. M. Ji, Y. L. Cao, Y. X. Gu, Y. Liu, W. Q. Ma, and Z. G. Wang, J. Appl. Phys. 107, 013102 (2010).
15.André Röhm, Benjamin Lingnau, and Kathy Lüdge, Appl. Phys. Lett. 106, 191102 (2015).
16.M. Ahmed, M. Yamada, and Safwat W. Z. Mahmoud, J. Appl. Phys. 101, 033119 (2007).
17.Y. Wu, R. A. Suris, and L. V. Asryan, Appl. Phys. Lett. 102, 191102 (2013).
18.Y. Wu and L. V. Asryan, J. Appl. Phys. 115, 103105 (2014).
19.H. M. Ji, T. Yang, Y. L. Cao, P. F. Xu, Y. X. Gu, and Z. G. Wang, Jpn. J. Appl. Phys. 49, 072103 (2010).

Data & Media loading...


Article metrics loading...



Large signal modulation characteristics of the simultaneous ground-state (GS) and excited-state (ES) lasing quantum dot lasers are theoretically investigated. Relaxation oscillations of ‘0 → 1’ and ‘1 → 0’ in the GS lasing region (Region I), the transition region from GS lasing to two-state lasing (Region II) and the two-state lasing region (Region III) are compared and analyzed. It is found that the overshooting power and settling time in both Regions I and III decrease as the bias current increases. However, there exist abnormal behaviors of the overshooting power and settling time in Region II owing to the occurrence of ES lasing, which lead to fuzzy eye diagrams of the GS and ES lasing. Moreover, the ES lasing in Region III possesses much better eye diagrams because of its shorter settling time and smaller overshooting power over the GS lasing in Region I.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd