Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, Nature 487, 459 (2012).
2.S. Bonora, U. Bortolozzo, S. Residori, R. Balu, and P. V. Ashrit, Opt. Lett. 35, 103 (2010).
3.Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, Nano Energy 1, 221 (2012).
4.B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, Infrared Phys. Technol. 57, 8 (2013).
5.P. Ben-Abdallah and S.-A. Biehs, Phys. Rev. Lett. 112, 044301 (2014).
6.R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, Adv. Funct. Mater. 21, 1602 (2011).
7.G. Andersson, Acta Chem. Scand. 10, 623 (1956).
8.J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
9.R. M. Briggs, I. M. Pryce, and H. A. Atwater, Opt. Express 18, 11192 (2010).
10.A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, Opt. Express 23, 3657 (2015).
11.J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, Opt. Express 20, 13215 (2012).
12.L. Sánchez, S. Lechago, and P. Sanchis, Opt. Lett. 40, 1452 (2015).
13.A. D. Wadsley, Acta Crystallog. 10, 261 (1957).
14.S. Kachi, K. Kosuge, and H. Okinaka, J. Solid State Chem. 6, 258 (1973).
15.U. Schwingenschögl and V. Eyert, Ann. Phys. (Leipzig) 13, 475 (2004).
16.E. Théobald, J. Less-Common Met. 53, 55 (1977).
17.Y. Oka, T. Yao, and N. Yamamoto, J. Solid State Chem. 86, 116 (1990).
18.Y. Oka, T. Yao, N. Yamonoto, Y. Ueda, and A. Hayashi, J. Solid State Chem. 105, 271 (1993).
19.A. Chen, Z. Bi, W. Zhang, J. Jian, Q. Jia, and H. Wang, Appl. Phys. Lett. 104, 071909 (2014).
20.A. Srivastava, H. Rotella, S. Saha, B. Pal, G. Kalon, S. Mathew, M. Motapothula, M. Dykas, P. Yang, E. Okunishi, D. D. Sarma, and T. Venkatesan, APL Mater. 3, 026101 (2015).
21.P. Schilbe, Phys. B (Amsterdam, Neth.) 316–317, 600 (2002).
22.G. I. Petrov, V. V. Yakovlev, and J. Squier, Appl. Phys. Lett. 81, 1023 (2002).
23.J. Y. Chou, J. L. Lensch-Falk, E. R. Hemesath, and L. J. Lauhon, J. Appl. Phys. 105, 034310 (2009).
24.G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Prekumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, Thin Solid Films 550, 59 (2014).
25.S. Saitzek, F. Guinneton, G. Guirleo, L. Sauques, K. Aguir, and J.-R. Gavarri, Thin Solid Films 516, 891 (2008).
26.S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, and Y. Ueda, J. Solid State Chem. 183, 1496 (2010).
27.S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, J. Appl. Phys. 92, 1893 (2002).
28.C. Julien, G. A. Nazri, and O. Bergström, Phys. Status Solidi B 201, 319 (1997).<319::AID-PSSB319>3.0.CO;2-T
29.X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, Appl. Surf. Sci. 177, 8 (2001).
30.H. Fujiwara, J. Koh, P. I. Rovira, and R. W. Collins, Phys. Rev. B: Condens. Matter Mater. Phys. 61, 10832 (2000).
31.H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, Jpn. J. Appl. Phys. 46, L113 (2007).
32.J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, Opt. Commun. 284, 807 (2011).
33.J.-P. Fortier, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, Sol. Energy Mater. Sol. Cells 125, 291 (2014).
34.N. Mlyuka, G. Niklasson, and C. G. Granqvist, Sol. Energy Mater. Sol. Cells 93, 1685 (2009).
35.S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, Appl. Phys. Lett. 105, 223515 (2014).

Data & Media loading...


Article metrics loading...



We systematically examined the effects of the substrate temperature ( ) and the oxygen pressure ( ) on the structural and optical properties polycrystalline V O films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O phase was formed at a ≥ 450 °C at values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT) temperature was observed in V O films grown at a of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the and , and was maximal for a V O film grown at 450 °C under 20 mTorr. Based on the results, we derived the versus 1/ phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O films on silicon platforms.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd