Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4934226
1.
1.M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, Nature 487, 459 (2012).
http://dx.doi.org/10.1038/nature11296
2.
2.S. Bonora, U. Bortolozzo, S. Residori, R. Balu, and P. V. Ashrit, Opt. Lett. 35, 103 (2010).
http://dx.doi.org/10.1364/OL.35.000103
3.
3.Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, Nano Energy 1, 221 (2012).
http://dx.doi.org/10.1016/j.nanoen.2011.12.002
4.
4.B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, Infrared Phys. Technol. 57, 8 (2013).
http://dx.doi.org/10.1016/j.infrared.2012.10.006
5.
5.P. Ben-Abdallah and S.-A. Biehs, Phys. Rev. Lett. 112, 044301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.044301
6.
6.R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, Adv. Funct. Mater. 21, 1602 (2011).
http://dx.doi.org/10.1002/adfm.201002436
7.
7.G. Andersson, Acta Chem. Scand. 10, 623 (1956).
http://dx.doi.org/10.3891/acta.chem.scand.10-0623
8.
8.J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
http://dx.doi.org/10.1016/0022-4596(71)90091-0
9.
9.R. M. Briggs, I. M. Pryce, and H. A. Atwater, Opt. Express 18, 11192 (2010).
http://dx.doi.org/10.1364/OE.18.011192
10.
10.A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, Opt. Express 23, 3657 (2015).
http://dx.doi.org/10.1364/OE.23.003657
11.
11.J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, Opt. Express 20, 13215 (2012).
http://dx.doi.org/10.1364/OE.20.013215
12.
12.L. Sánchez, S. Lechago, and P. Sanchis, Opt. Lett. 40, 1452 (2015).
http://dx.doi.org/10.1364/OL.40.001452
13.
13.A. D. Wadsley, Acta Crystallog. 10, 261 (1957).
http://dx.doi.org/10.1107/S0365110X57000821
14.
14.S. Kachi, K. Kosuge, and H. Okinaka, J. Solid State Chem. 6, 258 (1973).
http://dx.doi.org/10.1016/0022-4596(73)90189-8
15.
15.U. Schwingenschögl and V. Eyert, Ann. Phys. (Leipzig) 13, 475 (2004).
http://dx.doi.org/10.1002/andp.200410099
16.
16.E. Théobald, J. Less-Common Met. 53, 55 (1977).
http://dx.doi.org/10.1016/0022-5088(77)90157-6
17.
17.Y. Oka, T. Yao, and N. Yamamoto, J. Solid State Chem. 86, 116 (1990).
http://dx.doi.org/10.1016/0022-4596(90)90121-D
18.
18.Y. Oka, T. Yao, N. Yamonoto, Y. Ueda, and A. Hayashi, J. Solid State Chem. 105, 271 (1993).
http://dx.doi.org/10.1006/jssc.1993.1215
19.
19.A. Chen, Z. Bi, W. Zhang, J. Jian, Q. Jia, and H. Wang, Appl. Phys. Lett. 104, 071909 (2014).
http://dx.doi.org/10.1063/1.4865898
20.
20.A. Srivastava, H. Rotella, S. Saha, B. Pal, G. Kalon, S. Mathew, M. Motapothula, M. Dykas, P. Yang, E. Okunishi, D. D. Sarma, and T. Venkatesan, APL Mater. 3, 026101 (2015).
http://dx.doi.org/10.1063/1.4906880
21.
21.P. Schilbe, Phys. B (Amsterdam, Neth.) 316–317, 600 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)00584-7
22.
22.G. I. Petrov, V. V. Yakovlev, and J. Squier, Appl. Phys. Lett. 81, 1023 (2002).
http://dx.doi.org/10.1063/1.1496506
23.
23.J. Y. Chou, J. L. Lensch-Falk, E. R. Hemesath, and L. J. Lauhon, J. Appl. Phys. 105, 034310 (2009).
http://dx.doi.org/10.1063/1.3075763
24.
24.G. Rampelberg, D. Deduytsche, B. D. Schutter, P. A. Prekumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, Thin Solid Films 550, 59 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.10.039
25.
25.S. Saitzek, F. Guinneton, G. Guirleo, L. Sauques, K. Aguir, and J.-R. Gavarri, Thin Solid Films 516, 891 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.04.129
26.
26.S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, and Y. Ueda, J. Solid State Chem. 183, 1496 (2010).
http://dx.doi.org/10.1016/j.jssc.2010.04.007
27.
27.S.-H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, J. Appl. Phys. 92, 1893 (2002).
http://dx.doi.org/10.1063/1.1495074
28.
28.C. Julien, G. A. Nazri, and O. Bergström, Phys. Status Solidi B 201, 319 (1997).
http://dx.doi.org/10.1002/1521-3951(199705)201:1<319::AID-PSSB319>3.0.CO;2-T
29.
29.X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, Appl. Surf. Sci. 177, 8 (2001).
http://dx.doi.org/10.1016/S0169-4332(00)00918-1
30.
30.H. Fujiwara, J. Koh, P. I. Rovira, and R. W. Collins, Phys. Rev. B: Condens. Matter Mater. Phys. 61, 10832 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.10832
31.
31.H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, Jpn. J. Appl. Phys. 46, L113 (2007).
http://dx.doi.org/10.1143/JJAP.46.L113
32.
32.J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, Opt. Commun. 284, 807 (2011).
http://dx.doi.org/10.1016/j.optcom.2010.10.009
33.
33.J.-P. Fortier, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, Sol. Energy Mater. Sol. Cells 125, 291 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.03.007
34.
34.N. Mlyuka, G. Niklasson, and C. G. Granqvist, Sol. Energy Mater. Sol. Cells 93, 1685 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.03.021
35.
35.S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, Appl. Phys. Lett. 105, 223515 (2014).
http://dx.doi.org/10.1063/1.4903348
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4934226
Loading
/content/aip/journal/adva/5/10/10.1063/1.4934226
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4934226
2015-10-15
2016-12-06

Abstract

We systematically examined the effects of the substrate temperature ( ) and the oxygen pressure ( ) on the structural and optical properties polycrystalline V O films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O phase was formed at a ≥ 450 °C at values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT) temperature was observed in V O films grown at a of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the and , and was maximal for a V O film grown at 450 °C under 20 mTorr. Based on the results, we derived the versus 1/ phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O films on silicon platforms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4934226.html;jsessionid=L4KFyifoXSoyL4jemWNwoEhc.x-aip-live-02?itemId=/content/aip/journal/adva/5/10/10.1063/1.4934226&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4934226&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4934226'
Right1,Right2,Right3,