Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.N. A. K. Kaufmann, A. Dussaigne, D. Martin, P. Valvin, T. Guillet, B. Gil, F. Ivaldi, S. Kret, and N. Grandjean, Semicond. Sci. Technol. 27, 105023 (2012).
2.H. F. Liu, W. Liu, A. M. Yong, X. H. Zhang, S. J. Chua, and D. Z. Chi, J. Appl. Phys. 110, 063505 (2011).
3.Q. Deng, X. Wang, H. Xiao, C. Wang, H. Yin, H. Chen, D. Lin, L. Jiang, C. Feng, J. Li, Z. Wang, and X. Hou, J. Phys. D: Appl. Phys. 44, 345101 (2011).
4.L. Kirste, K. Köhler, M. Maier, M. Kunzer, M. Maier, and J. Wagner, J. Mater Sci: Mater Electron 19, S176S181 (2008).
5.K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, J. Appl. Phys. 97, 104914 (2005).
6.A. Vinattieri, F. Batignani, F. Bogani, M. Meneghini, G. Meneghesso, E. Zanoni, D. Zhu, and C. J. Humphreys, AIP Conference Proceedings 1583, 282 (2014).
7.M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, Physical Review B 59, 13176 (1999).
8.K. Harafuji and K. Kawamura, Japanese Journal of Applied Physics 44(9A), 64956504 (2005).
9.C.J. Pan and G.C. Chi, Solid-State Electronics 43, 621623 (1999).
10.Z. Benzarti, I. Halidou, Z. Bougrioua, T. Boufaden, and B. El Jani, Journal of Crystal Growth 310, 32743277 (2008).
11.K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, IEEE Journal of Quantum Electronics 48, 1169 (2012).
12.K. Harafuji, T. Tsuchiya, and K. Kawamura, phys. stat. sol. (c) 0(7), 22402243 (2003).
13.Z. Chen, N. Fichtenbaum, D. Brown, S. Keller, U.K. Mishra, S.P. Denbaars, and S. Nakamura, Journal of ELECTRONIC MATERIALS 37, 546 (2008).
14.B. Holländer, S. Mantl, M. Mayer, C. Kirchner, A. Pelzmann, M. Kamp, S. Christiansen, M. Albrecht, and H.P. Strunk, Nuclear Instrum. and Meth. in Phys. Res. B 136-138, 1248 (1998).
15.A. Turos, L. Nowicki, A. Stonert, K. Pagowska, J. Jagielski, and A. Muecklich, Nuclear Instrum. and Meth. in Phys. Res. B 268, 1718 (2010).
16.R. Hao, T. Zhu, M. Häberlen, T.Y. Chang, M. J. Kappers, R. A. Oliver, C. J. Humphreys, and M. A. Moram, Journal of Crystal Growth 312, 35363543 (2010).
17.M. A. Moram, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Adv. Mater. 21, 39413944 (2009).
18.C. B. Soh, H. Hartono, S. Y. Chow, S. J. Chua*, and S. Tripathy, P hys. Status Solidi C 6(S2), S699S702 (2009).
19.M. Tamura, T. Yodo, T. Saitoh, and J. Palmer, Journal of Crystal Growth 150, 654660 (1995).
20.H. Hartono, C. B. Soh, S. J. Chua, and E. A. Fitzgerald, phys. stat. sol. (c) 4(7), 25722575 (2007).
21.H.-C. Luan and K. C. Kimerling, United States Patent US 6,635,110 B1.

Data & Media loading...


Article metrics loading...



This paper describes a detailed analysis of the effects of high temperatures on the optical performance and structural characteristics of GaN-based LED structures with a high threading dislocation density. Results show that, as a consequence of storage at 900 °C in N atmosphere, the samples exhibit: () an increase in the efficiency of GaN and quantum-well luminescence, well correlated to an increase in carrier lifetime; () a decrease in the parasitic luminescence peaks related to Mg acceptors, which is correlated to the reduction in the concentration of Mg in the p-type region, detected by Secondary Ion Mass Spectroscopy (SIMS); () a diffusion of acceptor (Mg) atoms to the quantum well region; () a reduction in the yield of Rutherford Backscattering Spectrometry (RBS)-channeling measurements, possibly due to a partial re-arrangement of the dislocations, which is supposed to be correlated to the increase in radiative efficiency (see ()).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd