Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. H. Walther, R. Jaffe et al., “Carbon nanotubes in water: Structural characteristics and energetics,” Journal of Physical Chemistry B 105(41), 9980-9987 (2001).
2.X. Li, W. Yang et al., “Bending induced rippling and twisting of multiwalled carbon nanotubes,” Physical Review Letters 98(20), (2007).
3.N. Wu, Q. Wang et al., “Ejection of DNA molecules from carbon nanotubes,” Carbon 50(13), 4945-4952 (2012).
4.JK Holt, HG Park, Y Wang et al., “Fast mass transport through sub-2-nanometer carbon nanotubes,” Science 312, 10341037 (2006).
5.QN. Mingo and DA. Broido, “Carbon Nanotube Ballistic Thermal Conductance and Its Limits,” Phys. Rev. Lett. 95, 096105 (2005).
6.L. Liu, Y. P. Feng et al., “Structural and electronic properties of h-BN,” Physical Review B 68(10), (2003).
7.J. Zhang, K. P. Loh et al., “Work function of (8,0) single-walled boron nitride nanotube at the open tube end,” Journal of Applied Physics 99(10), (2006).
8.X. Li, W. Yang et al., “Fullerene coalescence into metallic heterostructures in boron nitride nanotubes: A molecular dynamics study,” Nano Letters 7(12), 3709-3715 (2007).
9.D. Golberg, Y. Bando, C.C. Tang, and C.Y. Zhi, “Boron Nitride Nanotubes,” Advanced Materials 19(18), 2413 (2007).
10.Y. Gao, X. Zhang et al., “The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride,” Nanoscale 7(16), 7143-7150 (2015).
11.Y. Miyamoto, H. Zhang et al., “Modifying the Interlayer Interaction in Layered Materials with an Intense IR Laser,” Physical Review Letters 114(11), (2015).
12.W. Q Han et al., “Transformation of BxCyNz nanotubes to pure BN nanotubes,” Applied physics letters 81(6), 1110.
13.J. Garel, I. Leven et al., “Ultrahigh Torsional Sti ffness and Strength of Boron Nitride Nanotubes,” Nano Letters 12, 63476352 (2012).
14.T. Komatsu and A. Goto, “Synthesis and characterization of graphite-like B-C-N materials of composition CNx(BN)(y) (x < < 1, y⇐1),” Journal of Materials Chemistry 12(5), 1288-1293 (2002).
15.M. Terrones, N. Grobert et al., “Synthetic routes to nanoscale BxCyNz architectures,” Carbon 40(10), 1665-1684 (2002).
16.L. Ci, L. Song et al., “Atomic layers of hybridized boron nitride and graphene domains,” Nature Materials 9(5), 430-435 (2010).
17.S. Wan, Y. Yu et al., “Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications,” Rsc Advances 5(25), 19236-19240 (2015).
18.C. Tan and H. Zhang, “Two-dimensional transition metal dichalcogenide nanosheet-based composites,” Chemical Society Reviews 44(9), 2713-2731 (2015).
19.G. Gao, W. Gao et al., “Artificially Stacked Atomic Layers: Toward New van der Waals Solids,” Nano Letters 12(7), 3518-3525 (2012).
20.Z. Yu, M. L. Hu et al., “Transport Properties of Hybrid Zigzag Graphene and Boron Nitride Nanoribbons,” Journal of Physical Chemistry C 115(21), 10836-10841 (2011).
21.B. Huang, C. Si et al., “Intrinsic half-metallic BN-C nanotubes,” Applied Physics Letters 97(4), (2010).
22.Du, Y. Chen, Z. Zhu, G. Lu, and S. C. Smith, “C-BN Single-Walled Nanotubes from Hybrid Connection of BN/C Nanoribbons: Prediction by ab initio Density Functional Calculations,” J. Am. Chem. Soc. 131, 1682 (2009).
23.Z. Y. Zhang, Z. Zhang, and W. Guo, “Stability and Electronic Properties of a Novel C-BN Heteronanotube from First-Principles Calculations,” J. Phys. Chem. C 113, 13108 (2009).
24.J. M. Pruneda, “Origin of half-semimetallicity induced at interfaces of C-BN heterostructures,” Phys. Rev. B 81, 161409 (2010).
25.J. Choi, Y. Kim, K. J. Chang, and D. Tomanek, “Itinerant ferromagnetism in heterostructured C/BN nanotubes,” Phys. Rev. B 67, 125421 (2003).
26.Jin Zhang and S A Meguid, “Composition-dependent buckling behaviour of hybrid boron nitride-carbon nanotubes,” Physical chemistry chemical physics : PCCP 17(19), 12796-803 (2015).
27.S. J. Papadakis, A. R. Hall, P. A. Williams, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, “Resonant Oscillators with Carbon-Nanotube Torsion Springs,” Phys. Rev. Lett. 93, 146101 (2004).
28.J. C. Meyer, M. Paillet, and S. Roth, “Single Molecule Torsional Pendulum,” Science 309, 1539 (2005).
29.A M Fennimore, T D Yuzvinsky, W Q Han et al., “Rotational actuators based on carbon nanotubes[J],” Nature 424(6947), 408-410 (2003).
30.A. R. Hall, L. An, J. Liu, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, “Experimental Measurement of Single-Wall Carbon Nanotube Torsional Properties,” Phys. Rev. Lett. 96, 256102 (2006).
31.Y. Wang, X. X. Wang et al., “Atomistic simulation of the torsion deformation of carbon nanotubes,” Modelling and Simulation in Materials Science and Engineering 12(6), 1099-1107 (2004).
32.T. C. Chang, “Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependent,” Applied Physics Letters 90(20), (2007).
33.Y. Y. Zhang, C. M. Wang et al., “A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes,” Carbon 48(14), 4100-4108 (2010).
34.N. M. A. Krishnan and D. Ghosh, “Chirality dependent elastic properties of single-walled boron nitride nanotubes under uniaxial and torsional loading,” Journal of Applied Physics 115(6), (2014).
35.S. Ajori and R. Ansari, “Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations,” Current Applied Physics 14(8), 1072-1077 (2014).
36.J. Song, J. Wu, Y. Huang, and K. C. Hwang, “Continuum modeling of boron nitride nanotubes,” Nanotechnology 19, 445705 (2008).
37.J. P. Lu, “Elastic Properties of Carbon Nanotubes and Nanoropes,” Phys. Rev. Lett. 79, 1297 (1997).
38.L Boldrin, F Scarpa, R Chowdhury, and S Adhikari, “Effective mechanical properties of hexagonal boron nitride nanosheets,” Nanotechnology 22, 505702 (2011).
39.V. Verma, V. K. Jindal, and K. Dharamvir, “Elastic moduli of a boron nitride nanotube,” Nanotechnology 18, 435711 (2007).
40.Lai Jiang and WanlinGuo, “A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes,” Journal of the Mechanics and Physics of Solids 59(6), 12041213 (2011).
41.J Tersoff, “New empirical approach for the structure and energy of covalent systems,” Phys. Rev. B 37, 69917000 (1988).
42.J Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Phys. Rev. B 39, 55668 (1989).
43.J Tersoff, “Empirical interatomic potential for carbon, with applications to amorphous carbon,” Phys. Rev. Lett. 61, 287982 (1988).
44.K Alper, J B Haskins, C Sevik, and T Çağın, “Thermal conductivity of BN-C nanostructures,” Phys. Rev. B 86, 115410 (2012).
45.W G Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A. 31, 16951697 (1985).
46.K N Kudin, G E Scuseria, and B I. Yakobson, “C 2 F, BN, and C nanoshell elasticity from ab initio computations[J],” Physical Review B 64(23), 235406 (2001).
47.Eduard Ventsel and Theodor Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications (CRC Press, 2001).
48.S Enouz, O Stéphan, J L Cochon et al., “C-BN patterned single-walled nanotubes synthesized by laser vaporization[J],” Nano letters 7(7), 1856-1862 (2007).

Data & Media loading...


Article metrics loading...



The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs), single-walled carbon nanotubes (SWCNTs), and their hybrid structures (SWBN-CNTs) are investigated using molecular dynamics (MD) simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs), including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length on the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X) and the angles of bonds.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd