Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Nechache, P. Gupta, C. Harnagea, and A. Pignolet, Appl. Phys. Lett. 91, 222908 (2007).
2.N. Ichikawa, M. Arai, Y. Imai, K. Hagiwara, H. Sakama, M. Azuma, Y. Shimakawa, M. Takano, Y. Kotaka, M. Yonetani, H. Fujisawa, M. Shimizu, K. Ishikawa, and Y. Cho, Appl. Phys. Exp. 1, 101302 (2008).
3.H. C. Ding, Y. W. Li, W. Zhu, Y. C. Gao, S. J. Gong, and C. G. Duan, J. Appl. Phys. 113, 123703 (2013).
4.M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez, and J. M. Triscone, Adv. Mater. 19, 41534159 (2007).
5.S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N. D. Mathur, A. Gaupp, R. Abrudan, F. Radu, and A. Barthélémy, Nature Materials 10, 753 DOI: 10.1038/nmat3098 (2011).
6.L. Y. Chen, C. L. Chen, K. X. Jin, and X. J. Du, EPL 99, 57008DOI: 10.1209/0295-5075/99/57008 (2012).
7.T. L. Qu, Y. G. Zhao, P. Yu, H. C. Zhao, S. Zhang, and L. F. Yang, Appl. Phys. Lett. 100, 242410 DOI: 10.1063/1.4729408 (2012).
8.V. A. Reddy, N. Dabra, K. K. Ashish, J. S. Hundal, N. P. Pathak, and R. Nath, Adv. Mater. Lett. 6(8), 678683 (2015).
9.L. Pintilie, K. Boldyreva, M. Alexe, and D. Hesse, New Journal of Physics 10, 013003 (2008).
10.H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, and D. H. Lowndes, Nature 433, 27 (2005).
11.P. Wu, X. Ma, Y. Li, V. Gopalan, and L. Q. Chen, Appl. Phys. Lett. 100, 092905 (2012).
12.D. Bao, Current opinion in solid state and material science 12, 5561 (2008).
13.C. A. Paz de Araujo, J. D. Cuchiaro, L. D. Mcmillan, M. C. Scott, and J. F. Scott, Nature 374, 627 (1994).
14.S. A. Sherrill, P. Banerjee, G. W. Rubloff, and S. B. Lee, Phys. Chem. Chem. Phys. 13, 20714 (2011).
15.Z. Hu, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, Ceram. Int. 40, 557562 (2014).
16.J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, Appl. Phys. Lett. 92, 142908 (2008).
17.S. Gupta, M. Tomar, and V. Gupta, J. Exp. Nanosci. 8(3), 261 (2013).
18.H.W. Chang, F.T. Yuan, Y.C. Yu, P.C. Chen, C.R. Wang, C.S. Tu, and S.U. Jen, J. Alloys Compd. 574, 402 (2013).
19.K. Jiang, J. J. Zhu, J. D. Wu, J. Sun, Z. G. Hu, and J. H. Chu, Appl. Mater. Interf. 3, 4844 (2011).
20.Q. Xu, Z. Wen, J. Gao, D. Wu, S. Tang, and M. Xu, Physica B 406, 2025 DOI : 0.1016/j.physb.2011.03.011 (2011).
21.H. Singh, A. Kumar, and K. L. Yadav, Mat. Sci. Eng. B 176, 540DOI: 10.1016/j.mseb.2011.01.010 (2011).
22.V. A. Reddy, N. Dabra, J. S. Hundal, N. P. Pathak, and R. Nath, Science of Advanced Materials 6, 1043 (2014).
23.I. Kingon, J. P. Maria, and S. K. Streiffer, Nature 406, 1032 (2000).
24.K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Rerche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, Science 306, 1005 (2004).
25.V. Vaithyanathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao, Y. L. Li, A. Kochhar, H. Ma, J. Levy, P. Zschack, J. C. Woicik, L. Q. Chen, V. Gopalan, and D. G. Schlom, J. Appl. Phys. 106, 024108 (2009).
26.S. Sharma, M. Tomar, A. Kumar, N. K. Puri, and V. Gupta, Physica B 448, 125127 (2014).
27.S. Sharma, M. Tomar, A. Kumar, N. K. Puri, and V. Gupta, Adv. Sci. Lett. 20, 13161320 (2014).
28.M. Kumar, A. Srinivas, and S.V. Suryanarayana, J. Appl. Phys. 87(2), 855 (2000).
29.M. Lorenz, V. Lazenka, P. Schwinkendorf, F. Bern, M. Ziese, H. Modarresi, A. Volodin, M. J. V. Bael, K. Temst, A. Vantomme, and M. Grundmann, J. Phys. D: Appl. Phys 47, 135303 (2014).
30.H. Toupet, V. V. Shvartsman, F. Lemarrec, P. Borisov, W. Kleemann, and M. Karkut, Integ. Ferroelectrics 100, 165176 (2008).
31.P. Yang, K. M. Kim, J. Y. Lee, J. Zhu, and H. Y. Lee, Integrated Ferroelectrics 113, 2630 (2009).
32.Z. Xu, D. Yan, D. Xiao, P. Yu, and J. Zhu, Ceramics International 39, 16391643 (2013).
33.S. H. Jo, S. G. Lee, and S. H. Lee, Materials Research Bulletin 47, 409412 (2012).
34.D. Huang, H. Deng, P. Yang, and Junhao Chu, Mater. Lett. 64, 22332235 (2010).
35.R. R. Das, Y. I. Yuzyuk, P. Bhattacharya, V. Gupta, and R. S. Katiyar, Phys. Rev. B 69, 132302 (2004).
36.H. Borkar, V. N. Singh, B. P. Singh, M. Tomar, V. Gupta, and A. Kumar, RSC Adv. 4, 22840 (2014).

Data & Media loading...


Article metrics loading...



Present work reports the fabrication of a multilayer (5-layer) structure of BiFeO(BFO)/BaTiO(BTO) using spin-coating technique. The crystallographic structure, surface morphology and ferroelectric behavior of multilayer structure in metal-ferroelectric-metal capacitor have been studied. Le-Bail refinement of X-ray diffraction data revealed the formation of polycrystalline pure perovskite phase with induced stress. The values of remnant (P) and saturation polarization (P) for BFO/BTO multilayer structure are found to be 38.14 μC/cm2 and 71.54 μC/cm2 respectively, which are much higher than the corresponding values reported for bare BFO thin film. A large value of dielectric constant of 187 has been obtained for multilayer structure with a low leakage current density of 1.09 × 10−7 A/cm2 at applied bias of 10 V. The BFO/BTO multilayer structure favors the enhanced energy storage capacity as compared to bare BFO thin film with improved values of energy-density and charge-discharge efficiency as 121 mJ/cm3 and 59% respectively, suggesting futuristic energy storage applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd