Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4934672
1.
1.J. Jeong, Z. S. Davidson, P. J. Collings, T. C. Lubensky, and A. G. Yodh, Proc. Natl. Acad. Sci. U.S.A. 111, 1742 (2014).
http://dx.doi.org/10.1073/pnas.1315121111
2.
2.F. R. Hung, O. Guzman, B. T. Gettelfinger, N. L. Abbott, and J. J. de Pablo, Phys. Rev. E 74, 011711 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.011711
3.
3.M. Kléman, Points, Lines and Walls: in Liquid Crystals in Magnetic Systems and Various Disordered Media (Wiley Press, New York, 1983).
4.
4.S. Kralj and E.G. Virga, J. Phys. A 34, 829 (2001).
http://dx.doi.org/10.1088/0305-4470/34/4/309
5.
5.N. Schopohl and T.J. Sluckin, Phys. Rev. Lett. 59, 2582 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2582
6.
6.P. Palffy-Muhoray, E.C. Gartland, and J.R. Kelly, Liq. Cryst. 16, 713 (1994).
http://dx.doi.org/10.1080/02678299408036543
7.
7.F. Bisi, E.C. Gartland, R. Rosso, and E.G. Virga, Phys. Rev. E 68, 021707 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.021707
8.
8.S. Kralj, E.G. Virga, and S. Žumer, Phys. Rev. E 60, 1858 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.1858
9.
9.G. Lombardo, H. Ayeb, F. Ciuchi, M.P. de Santo, R. Barberi, R. Bartolino, E.G. Virga, and G.E. Durand, Phys. Rev. E 77, 020702:1 (2008).
10.
10.M. Ambrožič, S. Kralj, and E.G. Virga, Phys. Rev. E 75, 031708 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.031708
11.
11.S. Kralj, R. Rosso, and E.G. Virga, Phys. Rev. E 81, 021703 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.021702
12.
12.R. Barberi, F. Ciuchi, G.E. Durand, M. Iovane, D. Sikharulidze, A.M. Sonnet, and E.G Virga, Eur. Phys. J. E 13, 61 (2004).
http://dx.doi.org/10.1140/epje/e2004-00040-5
13.
13.P. Martinot-Lagarde, H. Dreyfus-Lambez, and I. Dozov, Phys. Rev. E 67, 051710 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.051710
14.
14.R. Barberi, F.G. Ciuchi, G. Lombardo, R. Bartolino, and G.E. Durand, Phys. Rev. Lett. 93, 137801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.137801
15.
15.O. Guzmán, N.L. Abbott, and J.J. de Pablo, J. Chem. Phys. 122, 184711 (2005).
http://dx.doi.org/10.1063/1.1896354
16.
16.P.G. De Gennes and J. Prost, The physics of liquid crystals (Oxford University, Oxford, 1993).
17.
17.X. Zhou and Z.D Zhang, Int. J. Mol. Sci. 14, 24135 (2013).
http://dx.doi.org/10.3390/ijms141224135
18.
18.V.G. Bodnar, O.D. Lavrentovich, and V.M. Pergamen-shchik, Zh. Eksp. Teor. Fiz. 101, 111 (1992).
19.
19.S. Kralj and E.G. Virga, Phys. Rev E 66, 021703 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.021703
20.
20.C. Denniston and J. Yeomans, Phys. Rev. Lett. 87, 275505 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.275505
21.
21.P. Biscari and T.J. Sluckin, SIAM J. Appl. Math. 65, 2141 (2005).
http://dx.doi.org/10.1137/040618898
22.
22.K. Kočevar and I. Muševič, Phys. Rev. E 65, 021703 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.021703
23.
23.S. Kralj, G. Cordoyiannis, A. Zidanšek, G. Lahajnar, H. Amenitsch, S. Žumer, and Z. Kutnjak, J. Chem. Phys. 127, 154905 (2007).
http://dx.doi.org/10.1063/1.2795716
24.
24.A. V. Kityk, M. Wolff, K. Knorr, D. Morineau, R. Lefort, and P. Huber, Phys. Rev. Lett. 101, 187801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.187801
25.
25.E.G. Virga, Variational Theories for Liquid Crystals (Chap-man Hall, London, 1994).
26.
26.P. Kaiser, W. Wiese, and S. Hess, J. Non-Equilib. Thermodyn. 17, 153 (1992).
http://dx.doi.org/10.1515/jnet.1992.17.2.153
27.
27.O. Guzmán, N. L. Abbott, and J. J. De Pablo, J. Chem. Phys. 122, 184711 (2005).
http://dx.doi.org/10.1063/1.1896354
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4934672
Loading
/content/aip/journal/adva/5/10/10.1063/1.4934672
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4934672
2015-10-21
2016-12-04

Abstract

In accordance with the 2D Landau–de Gennes tensorial formalism, we investigated the influence of an applied electric field parallel to the defect line on the position and structure of a nematic line defect with topological charge = − 1/2 in a hybrid alignment nematic cell with different cell gaps . A new type of surface order reconstruction occurs in the cell as is increased. Regardless of , two biaxial layers can be achieved near the top and bottom substrates of the cell with different values. This process involves double eigenvalue exchange across the cell. However, the structural transition processes vary for different values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4934672.html;jsessionid=7kzFqJilwvc4nI9vjJ28NLNY.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4934672&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4934672&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4934672'
Right1,Right2,Right3,