Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4934673
1.
1.Y. Kamata, Mater. Today 11, 30 (2008).
http://dx.doi.org/10.1016/S1369-7021(07)70350-4
2.
2.R. Pillarisetty, Nature 479, 324 (2011).
http://dx.doi.org/10.1038/nature10678
3.
3.S. Rivillon, Y. J. Chabal, F. Amy, and A. Kahn, Appl. Phys. Lett. 87, 253101 (2005).
http://dx.doi.org/10.1063/1.2142084
4.
4.S. Sun, Y. Sun, Z. Liu, D. Lee, S. Peterson, and P. Pianetta, Appl. Phys. Lett. 88, 021903 (2006).
http://dx.doi.org/10.1063/1.2162699
5.
5.T. Deegan and G. Hughes, Appl. Surf. Sci. 123/124, 66 (1998).
http://dx.doi.org/10.1016/S0169-4332(97)00511-4
6.
6.D. Bodlaki, H. Yamamoto, D. H. Waldeck, and E. Borguet, Surf. Sci. 543, 63 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00958-0
7.
7.J-H. Lee, E. K. Lee, W-J. Joo, Y. Jang, B-S. Kim, J. Y. Lim, S-H. Choi, S. J. Ahn, J. R. Ahn, M-H. Park, C-W. Yang, B. L. Choi, S-W. Hwang, and D. Whang, Science 344, 286 (2014).
http://dx.doi.org/10.1126/science.1252268
8.
8.K. Choi and J. M. Buriak, Langmuir 16, 7737 (2000).
http://dx.doi.org/10.1021/la000413d
9.
9.G. W. Cullen, J. A. Amick, and D. Gerlich, J. Electrochem. Soc. 109, 124 (1962).
http://dx.doi.org/10.1149/1.2425342
10.
10.M. R. Kosuri, R. Cone, Q. M. Li, S. M. Han, B. C. Bunker, and T. M. Mayer, Langmuir 20, 835 (2004).
http://dx.doi.org/10.1021/la035521p
11.
11.G. R. Bell, C. F. McConville, and T. S. Jones, Phys. Rev. B 56, 15995 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.15995
12.
12.G. R. Bell, C. F. McConville, and T. S. Jones, Phys. Rev. B 54, 2654 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.2654
13.
13.P. D. C. King, T. D. Veal, M. J. Lowe, and C. F. McConville, J. Appl. Phys. 104, 083709 (2008).
http://dx.doi.org/10.1063/1.3000567
14.
14.T. D. Veal and C. F. McConville, Phys. Rev. B 64, 085311 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085311
15.
15.G. R. Bell, T. S. Jones, and C. F. McConville, Appl. Phys. Lett. 71, 3688 (1997).
http://dx.doi.org/10.1063/1.120482
16.
16.L. F. J. Piper, T. D. Veal, I. Mahboob, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. B 70, 115333 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115333
17.
17.T. D. Veal, M. J. Lowe, and C. F. McConville, Surf. Sci. 499, 251 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01856-8
18.
18.Ph. Lambin, J. P. Vigneron, and A. A. Lucas, Comput. Phys. Commun. 60, 351 (1990).
http://dx.doi.org/10.1016/0010-4655(90)90034-X
19.
19.L. Bolotov, T. Tada, M. Iitake, M. Nishizawa, and T. Kanayama, Jpn. J. Appl. Phys. 50, 04DA04 (2011).
http://dx.doi.org/10.7567/JJAP.50.04DA04
20.
20.L. Bolotov, T. Tada, H. Arimoto, K. Fukuda, M. Nishizawa, and T. Kanayama, Trans. Mat. Res. Soc. Japan 38, 257 (2013).
http://dx.doi.org/10.14723/tmrsj.38.257
21.
21.C. W. Lim, J. M. Soon, N. L. Ma, W. Chen, and K. P. Loh, Surf. Sci. 575, 51 (2005).
http://dx.doi.org/10.1016/j.susc.2004.11.002
22.
22.J. Eggeling, G. R. Bell, and T. S. Jones, J. Phys. Chem. B 103, 9683 (1999).
http://dx.doi.org/10.1021/jp992217p
23.
23.J. H. Miller and L. Andrews, J. Mol. Struct. 77, 65 (1981).
http://dx.doi.org/10.1016/0022-2860(81)85267-2
24.
24.J. M. Coffin, T. P. Hamilton, P. Pulay, and I. Hargittai, Inorg. Chem. 28, 4092 (1989).
http://dx.doi.org/10.1021/ic00321a012
25.
25.M. L. Roldán, S. A. Brandán, A. Navarro, and A. B. Altabef, J. Raman Spectrosc. 40, 1591 (2009).
http://dx.doi.org/10.1002/jrs.2304
26.
26.E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
http://dx.doi.org/10.1016/0022-3697(57)90013-6
27.
27.R. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, App. Phys. Lett. 102, 152106 (2013).
http://dx.doi.org/10.1063/1.4802199
28.
28.H. Lüth, Solid Surfaces, Interfaces and Thin Films, 5th ed. (Springer, New York, 2010).
29.
29.A. Thanailakis and D. C. Northrop, Solid-St. Electron. 16, 1382 (1973).
http://dx.doi.org/10.1016/0038-1101(73)90052-X
30.
30.I. D. Sharp, S. J. Schoell, M. Hoeb, M. S. Brandt, and M. Stutzmann, Appl. Phys. Lett. 92, 223306 (2008).
http://dx.doi.org/10.1063/1.2939221
31.
31.H. B. Gray, Chemical binds: an introduction to atomic and molecular structure (Benjamin/Cummings Publishing Company, 1972).
32.
32.W. Mönch, Semiconductor Surfaces and Interfaces, 2nd ed. (Springer, Berlin, 1995).
33.
33.D. Troost, L. Koenders, L. –Y. Fan, and W. Mönch, J. Vac. Sci. Technol. B 5, 1119 (1987).
http://dx.doi.org/10.1116/1.583739
34.
34.L. S. O. Johansson, R. I. G. Uhrberg, R. Lindsay, P. L. Wincott, and G. Thornton, Phys. Rev. B 42, 9534 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.9534
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4934673
Loading
/content/aip/journal/adva/5/10/10.1063/1.4934673
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4934673
2015-10-21
2016-12-02

Abstract

Carrier distributions near n-type epitaxially-grown Ge(100) surfaces with high impurity concentrations (1 × 1020 cm−3) were studied using high resolution electron energy loss spectroscopy (HREELS) upon surface treatments in aqueous solutions of HF and HCl. After surface treatments with HCl and HF, the molecular vibration modes distinctly showed either chloride or hydride terminations of Ge surfaces with negligible oxidation. The free-carrier concentration profile was inferred from the conduction band plasmon measurements as a function of the incident electron energies employing a dielectric theory simulation with a 4-layer structure and an effective electron mass of 0.02 . A carrier-free layer of 40 and 24 Å were derived for HCl- and HF-treated Ge(100), respectively. The surface band bending was estimated to be 0.32 eV for HF-treated Ge. HCl-treated Ge surfaces showed a band bending of 0.91 eV attributed to the strong effect of the surface Cl-Ge dipole.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4934673.html;jsessionid=gQJIEyj5s-1t6OBSMuUTIR2-.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4934673&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4934673&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4934673'
Right1,Right2,Right3,