Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4934675
1.
1.T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, Nature 398, 489 (1999).
http://dx.doi.org/10.1038/19037
2.
2.Amol R. Holkundkar, Gaurav Mishra, and N. K. Gupta, Phys. Plasmas 21, 013101 (2014).
http://dx.doi.org/10.1063/1.4861371
3.
3.W. Bang, Phys. Rev. E 92, 013102 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.013102
4.
4.T. Ditmire, R. A. Smith, and M. H. R. Hutchinson, Opt. Lett. 23, 322 (1998).
http://dx.doi.org/10.1364/OL.23.000322
5.
5.C. S. Liu, V. K. Tripathi, and Manoj Kumar, Phys. Plasmas 21, 103101 (2014).
http://dx.doi.org/10.1063/1.4897188
6.
6.Fazel Jahangiri, Masaki Hashida, Shigeki Tokita, Takeshi Nagashima, Masanori Hangyo, and Shuji Sakabe, Appl. Phys. Lett. 102, 191106 (2013).
http://dx.doi.org/10.1063/1.4804582
7.
7.O. F. Hagena and W. Obert, J. Chem. Phys. 56, 1793 (1972).
http://dx.doi.org/10.1063/1.1677455
8.
8.O. F. Hagena, Surf. Sci. 106, 101 (1981).
http://dx.doi.org/10.1016/0039-6028(81)90187-4
9.
9.U. Even, Advances in Chemistry 2014, 636042 (2014).
http://dx.doi.org/10.1155/2014/636042
10.
10.K. Luria, W. Christen, and U. Even, J. Phys. Chem. A 115, 7362 (2011).
http://dx.doi.org/10.1021/jp201342u
11.
11.M. Hillenkamp, S. Keinan, and U. Even, J. Chem. Phys. 118, 8699 (2003).
http://dx.doi.org/10.1063/1.1568331
12.
12.Daniela Rupp, Marcus Adolph, Leonie Flückiger, Tais Gorkhover, Jan Philippe Müller, Maria Müller, Mario Sauppe, David Wolter, Sebastian Schorb, Rolf Treusch, Christoph Bostedt, and Thomas Möller, J. Chem. Phys. 141, 044306 (2014).
http://dx.doi.org/10.1063/1.4890323
13.
13.D. G. Jang, Y. S. You, H. M. Milchberg, H. Suk, and K. Y. Kim, Appl. Phys. Lett. 105, 021906 (2014).
http://dx.doi.org/10.1063/1.4890596
14.
14.A. M. Bush, A. J. Bell, J. G. Frey, and J-M. Mestdagh, J. Phys. Chem. A 102, 6457 (1998).
http://dx.doi.org/10.1021/jp9814810
15.
15.A. Ramos, J. M. Fernández, G. Tejeda, and S. Montero, Phys. Rev. A 72, 053204 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.053204
16.
16.R. A. Smith, T. Ditmire, and J. W. G. Tisch, Rev. Sci. Instrum. 69, 3798 (1998).
http://dx.doi.org/10.1063/1.1149181
17.
17.F. M. DeArmond, J. Suelzer, and M. F. Masters, J. Appl. Phys. 103, 093509 (2008).
http://dx.doi.org/10.1063/1.2903552
18.
18.X. Gao, X. Wang, B. Shim, A. V. Arefiev, R. Korzekwa, and M. C. Downer, Appl. Phys. Lett. 100, 064101 (2012).
http://dx.doi.org/10.1063/1.3683543
19.
19.S. Jinno, Y. Fukuda, 1 H. Sakaki, A. Yogo, 1 M. Kanasaki, K. Kondo, A. Ya. Faenov, I. Yu. Skobelev, T. A. Pikuz, A. S. Boldarev, and V. A. Gasilov, Appl. Phys. Lett. 102, 164103 (2013).
http://dx.doi.org/10.1063/1.4802915
20.
20.H. Y. Lu, G. Q. Ni, R. X. Li, and Z. Z. Xu, J. Chem. Phys. 132, 124303 (2010).
http://dx.doi.org/10.1063/1.3356024
21.
21.F. Dorchies, F. Blasco, T. Caillaud, J. Stevefelt, C. Stenz, A. S. Boldarev, and V. A. Gasilov, Phys. Rev. A 68, 023201 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.023201
22.
22.Guanglong Chen, Xiaotao Geng, Hongxia Xu, Yiming Mi, Xiuli Zhang, Lili Wang, and Dong Eon Kim, AIP Advances 3, 032133 (2013).
http://dx.doi.org/10.1063/1.4796187
23.
23.S. Jinno, Y. Fukuda, H. Sakaki, A. Yogo, M. Kanasaki, K. Kondo, A.Ya. Faenov, I.Yu. Skobelev, T.A. Pikuz, A.S. Boldarev, and V.A. Gasilov, Opt. Express 21, 20656 (2013).
http://dx.doi.org/10.1364/OE.21.020656
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4934675
Loading
/content/aip/journal/adva/5/10/10.1063/1.4934675
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4934675
2015-10-21
2016-12-05

Abstract

The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4934675.html;jsessionid=ZDOKygU6461TVmPFDCT301Uj.x-aip-live-02?itemId=/content/aip/journal/adva/5/10/10.1063/1.4934675&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4934675&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4934675'
Right1,Right2,Right3,