Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Z. Durmus, A. Durmus, and H. Kavas, “Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material,” Journal of Materials Science 50, 1201-1213 (2015).
2.R.C. Pullar, “Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics,” Prog Mater Sci 57, 11911334 (2012).
3.U. Ozgur, Y. Alivov, and H. Morkoc, “Microwave ferrites, part 1: fundamental properties,” J Mater Sci-Mater Electron 20, 789834 (2009).
4.D. Barb, L. Diamandescu, A. Rusi, D. Tarabasanumihaila, M. Morariu, and V. Teodorescu, “Preparation of barium hexaferrite by a hydrothermal method: structure and magnetic-properties,” J Mater Sci 21, 11181122 (1986).
5.W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, and Y. Du, “Key step in synthesis of ultrafine BaFe12O19 by sol–gel technique,” J Magn Magn Mater 168, 196202 (1997).
6.S.R. Janasi, D. Rodrigues, F. J. G. Landgraf, and M. Emura, “Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions,” IEEE Trans Magn 36, 33273329 (2000).
7.H. Sozeri, “Simple recipe to synthesize single-domain BaFe12O19 with high saturation magnetization,” J Magn Magn Mater 321, 27172722 (2009).
8.H. Kojima, Fundamental Properties of Hexagonal Ferrites with Magnetoplumbite Structure, Handbook of Ferromagnetic Materials Vol. 3 (Elsevier, Amsterdam, 1982), pp. 305-391.
9.S. Thomas, V. Deepu, S. Uma, P. Mohanan, J. Philip, and M.T. Sebastian, “Preparation, characterization and properties of Sm2Si2O7 loaded polymer composites for microelectronic applications,” Materials Science and Engineering B163, 6775 (2009).
10.K. Suemori, Y. Watanabe, and S. Hoshino, “Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials,” Applied Physics Letters 106, 113902 (2015).
11.W. Huang, X. Yu, H. Fan, and J. Yu, “High performance unipolar inverters by utilizing organic field-effect transistors with ultraviolet/ozone treated polystyrene dielectric,” Applied Physics Letters 105, 093302 (2014).
12.M. A. Solomon and P. Kurian, International Journal of Polymeric Materials 53, 565575 (2004).
13.M. Rubacha and J. Zięba, FIBRES & TEXTILES in Eastern Europe 14, 49 (2006).
14.M. Chipara, R. Skomsky, N. Ali, D. Hui, and D. J. Sellmyer, J. Nanosci. Nanotechnol. 8, 1 (2008).
15.J.T. Stajić-Trošić, A.S. Grujić, D.M. Nedeljković, and A.P. Stajčić, “Magnetic Behaviour of Polymer Bonded Nd-Fe-B Composite Materials,” in 15th International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology” TMT 2011, Prague, Czech Republic, 12-18 September 2011.
16. Ghzaiel, Tayssir BEN, Wadia Dhaoui, and Frederic Mazaleyrat, “Magnetic behaviour of Polyaniline/BaFe12O19 composites synthesised by two different pathways,” in Symposium de Génie Électrique 2014.
17.D. Lisjak, P. Lintunen, A Hujanen, T. Varis, G. Bolelli, L. Lusvarghi, M. Jagodič, and M. Drofenik, “Hexaferrite/polyethylene composite coatings prepared with flame spraying,” Materials Letters 65, 534-536 (2011).
18.A. Ecija, A. Larrañaga, K. Vidal, L. Ortega, and M.I. Arriortua, Synthetic Methods for Perovskite Materials; Structure and Morphology (INTECH Open Access Publisher, 2012).
19.A. Tawfik and O. M. Hemeda, Materials Letters 56(no. 5), 665-670 (2002).
20.D. M. Hemeda and O. M. Hemeda, Journal of Magnetism and Magnetic Materials 320(8), 1557-1562 (2008).
21.L. A. Ramajo, A. A. Cristóbal, P. M. Botta, JM Porto López, M. M. Reboredo, and M. S. Castro, “Dielectric and magnetic response of Fe3O4/epoxy composites,” Composites Part A: Applied Science and Manufacturing 40(4), 388-393 (2009).
22.K. Singh, A. Ohlan, R. K. Kotnala, A. K. Bakhshi, and S. K. Dhawan, “Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with γ-Fe2O3 nanoparticles,” Materials Chemistry and Physics 112, 651-658 (2008).
23.P. Xu, X. Han, J. Jiang, X. Wang, X. Li, and A. Wen, “Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites,” The Journal of Physical Chemistry C 111, 12603-12608 (2007).
24.H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1967).
25.P. Xu, X.J. Han, and M.J. Wang, J. Phys. Chem. C 111, 5866 (2007).
26.Joint Committee Powder Diffraction Fiels (JCPDF) Card No. 84-0757.
27.L. Rezlescue, E. Rezlescue, P.D. Popa, and N. Rezlescue, “Fine barium hexaferrite powder prepared by the crystallization of glass,” Journal of Magnetism and Magnetic Materials 193, 288-290 (1999).
28.M.V. Rane, D. Bahadur, A.K. Nigam, and C.M. Srivastava, “Mossbauer and FT-IR studies on non-stoichiometric barium hexaferrites,” Journal of Magnetism and Magnetic Materials 192, 288-296 (1999).
29.J. Dho, E.K. Lee, J.Y. Park, and N.H. Hur, J. Magn. Magn. Mater. 285, 164 (2005).
30.N. Watanabe, J. Morais, S. B. B. Accione, A. Morrone, J. E. Schmidt, and M. C. Alves, J. Phys. Chem. B 108, 4013 (2004).
31.J. R. Martínez, J. Román de Alba, I. G. Blanco-Esqueda, A. Guerrero-Serrano, and G. Ortega-Zarzosa, “Coercivity Values Enhancement by Incorporation of Magnetic Powders in Inorganic Matrix Hosts.,” New Journal of Glass and Ceramics 3, 1-5 (2013).

Data & Media loading...


Article metrics loading...



We demonstrate that the promising effect of inclusion of single magnetic-domain type-M hexaferrite of barium (BaM) particles in polystyrene (PS) polymer (BaM/PS weight ratio = 2/1). The results show that the coercivity of BaM particles remarkably increases from 714 to 3772 Oe and remanence increases from 2.07 to 5.41 emu.g−1 when they embedded into PS. Moreover, magnetic coercivity and squareness of the BaM-PS are significantly larger, and is comparable with corresponding values of other BaM-polymer composites. Therefore, BaM-PS composite enforce itself as the modern potential materials with tendency of replacing existing composite materials in several applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd