Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4934791
1.
1.A. Zakutayev, C. M. Caskey, A. N. Fioretti, D. S. Ginley, J. Vidal, V. Stevanovic, E. Tea, and S. Lany, J. Phys. Chem. Lett. 5, 1117 (2014).
http://dx.doi.org/10.1021/jz5001787
2.
2.M. Asano, K. Umeda, and A. Tasaki, Jpn. J. Appl. Phys. 29, 1985 (1990).
http://dx.doi.org/10.1143/JJAP.29.1985
3.
3.D. M. Borsa, S. Grachev, C. Presura, and D. O. Boerma, Appl. Phys. Lett. 80, 1823 (2002).
http://dx.doi.org/10.1063/1.1459116
4.
4.Q. Lu, X. Zhang, W. Zhu, Y. Zhou, Q. Zhou, L. Liu, and X. Wu, Phys. Status Solidi A 208, 874 (2011).
http://dx.doi.org/10.1002/pssa.201026680
5.
5.N. Pereira, L. Dupont, J. M. Tarascon, L. C. Klein, and G. G. Amatucci, J. Electrochem. Soc. 150, A1273 (2003).
http://dx.doi.org/10.1149/1.1599845
6.
6.U. Zachweija and H. Jacobs, J. Less Common Met. 161, 175 (1990).
http://dx.doi.org/10.1016/0022-5088(90)90327-G
7.
7.N. Lu, A. Ji, and Z. Cao, Sci. Rep. 3, 3090 (2013).
8.
8.M. G. Moreno-Armenta, A. Martínez-Ruiz, and N. Takeuchi, Solid State Sci. 6, 9 (2004).
http://dx.doi.org/10.1016/j.solidstatesciences.2003.10.014
9.
9.G. Soto, I. Ponce, M. G. Moreno, F. Yubero, and W. D. Cruz, J. Alloys Compd. 594, 48 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.01.113
10.
10.A. Ji, D. Yun, L. Gao, and Z. Cao, Phys. Status Solidi A 207, 2769 (2010).
http://dx.doi.org/10.1002/pssa.201026449
11.
11.U. Hahn and W. Weber, Phys. Rev. B 53, 12684 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.12684
12.
12.X. Y. Fan, Z. J. Li, A. L. Meng, C. Li, Z. G. Wu, and P. X. Yan, J. Phys. D: Appl. Phys. 47, 185304 (2014).
http://dx.doi.org/10.1088/0022-3727/47/18/185304
13.
13.J. Yang, S. Huang, Z. Wang, Y. Hou, Y. Shi, J. Zhang, J. Yang, and X. Li, J. Vac. Sci. Technol. A 32, 051510 (2014).
http://dx.doi.org/10.1116/1.4891649
14.
14.H. Chen, X. Li, J. Zhao, Z. Wu, T. Yang, Y. Ma, W. Huang, and K. Yao, Comp. Theor. Chem. 1027, 33 (2014).
http://dx.doi.org/10.1016/j.comptc.2013.10.017
15.
15.S. Ghosh, F. Singh, D. Choudhary, D. K. Avasthi, V. Ganesan, P. Shah, and A. Gupta, Surf. Coat. Technol. 142–144, 1034 (2001).
http://dx.doi.org/10.1016/S0257-8972(01)01091-X
16.
16.J. F. Pierson, Vacuum 66, 59 (2002).
http://dx.doi.org/10.1016/S0042-207X(01)00425-0
17.
17.G. H. Yue, P. X. Yan, J. Z. Liu, M. X. Wang, M. Li, and X. M. Yuan, J. Appl. Phys. 98, 103506 (2005).
http://dx.doi.org/10.1063/1.2132507
18.
18.T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, and Y. Nakayama, Thin Solid Films 348, 8 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01776-3
19.
19.D. Wang, N. Nakamine, and Y. Hayashi, J. Vac. Sci. Technol. A 16, 2084 (1998).
http://dx.doi.org/10.1116/1.581314
20.
20.K. Matsuzaki, T. Okazaki, Y. Lee, H. Hosono, and T. Susaki, Appl. Phys. Lett. 105, 222102 (2014).
http://dx.doi.org/10.1063/1.4903069
21.
21.K. P. Biju, A. Subrahmanyam, and M. K. Jain, J. Phys. D: Appl. Phys. 41, 155409 (2008).
http://dx.doi.org/10.1088/0022-3727/41/15/155409
22.
22.G. Sahoo, S. R. Meher, and M. K. Jain, Mater. Sci. Eng. B 191, 7 (2015).
http://dx.doi.org/10.1016/j.mseb.2014.10.002
23.
23.J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).
http://dx.doi.org/10.1002/pssb.19660150224
24.
24.F. Urbach, Phys. Rev. B 92, 1324 (1953).
http://dx.doi.org/10.1103/PhysRev.92.1324
25.
25.P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.287
26.
26.N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).
27.
27.B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).
28.
28.K. G. Lisunov, M. Guk, A. Nateprov, S. Levcenko, V. Tezlevan, and E. Arushanov, Sol. Energy Mater. Sol. Cells 112, 127 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.01.027
29.
29.A. Bose, S. Basu, S. Banerjee, and D. Chakravorty, J. Appl. Phys. 98, 074307 (2005).
http://dx.doi.org/10.1063/1.2084311
30.
30.V. P. Arya, V. Prasad, and P. S. A. Kumar, J. Phys.: Condens. Matter 24, 245602 (2012).
http://dx.doi.org/10.1088/0953-8984/24/24/245602
31.
31.S. R. Meher, R. V. M. Naidu, K. P. Biju, A. Subrahmanyam, and M. K. Jain, Appl. Phys. Lett. 99, 082112 (2011).
http://dx.doi.org/10.1063/1.3630000
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4934791
Loading
/content/aip/journal/adva/5/10/10.1063/1.4934791
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4934791
2015-10-23
2016-12-08

Abstract

We have investigated the temperature dependent carrier transport properties of nano-crystalline copper nitride thin films synthesized by modified activated reactive evaporation. The films, prepared in a Cu-rich growth condition are found to be highly disordered and the carrier transport in these films is mainly attributed to the impurity band conduction. We have observed that no single conduction mechanism is appropriate to elucidate the carrier transport in the entire temperature range of 20 – 300 K. Therefore, we have employed different conduction mechanisms in different temperature regimes. The carrier transport of the films in the low temperature regime (20 – 150 K) has been interpreted by implementing quantum correction to the conductivity. In the high temperature regime (200 – 300 K), the conduction mechanism has been successfully analyzed on the basis of Mott’s variable range hopping mechanism. Furthermore, it can be predicted that copper ions present at the surface of the crystallites are responsible for the hopping conduction mechanism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4934791.html;jsessionid=geORhtAmXtxT02zRt1dyncQ2.x-aip-live-02?itemId=/content/aip/journal/adva/5/10/10.1063/1.4934791&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4934791&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4934791'
Right1,Right2,Right3,