Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Zakutayev, C. M. Caskey, A. N. Fioretti, D. S. Ginley, J. Vidal, V. Stevanovic, E. Tea, and S. Lany, J. Phys. Chem. Lett. 5, 1117 (2014).
2.M. Asano, K. Umeda, and A. Tasaki, Jpn. J. Appl. Phys. 29, 1985 (1990).
3.D. M. Borsa, S. Grachev, C. Presura, and D. O. Boerma, Appl. Phys. Lett. 80, 1823 (2002).
4.Q. Lu, X. Zhang, W. Zhu, Y. Zhou, Q. Zhou, L. Liu, and X. Wu, Phys. Status Solidi A 208, 874 (2011).
5.N. Pereira, L. Dupont, J. M. Tarascon, L. C. Klein, and G. G. Amatucci, J. Electrochem. Soc. 150, A1273 (2003).
6.U. Zachweija and H. Jacobs, J. Less Common Met. 161, 175 (1990).
7.N. Lu, A. Ji, and Z. Cao, Sci. Rep. 3, 3090 (2013).
8.M. G. Moreno-Armenta, A. Martínez-Ruiz, and N. Takeuchi, Solid State Sci. 6, 9 (2004).
9.G. Soto, I. Ponce, M. G. Moreno, F. Yubero, and W. D. Cruz, J. Alloys Compd. 594, 48 (2014).
10.A. Ji, D. Yun, L. Gao, and Z. Cao, Phys. Status Solidi A 207, 2769 (2010).
11.U. Hahn and W. Weber, Phys. Rev. B 53, 12684 (1996).
12.X. Y. Fan, Z. J. Li, A. L. Meng, C. Li, Z. G. Wu, and P. X. Yan, J. Phys. D: Appl. Phys. 47, 185304 (2014).
13.J. Yang, S. Huang, Z. Wang, Y. Hou, Y. Shi, J. Zhang, J. Yang, and X. Li, J. Vac. Sci. Technol. A 32, 051510 (2014).
14.H. Chen, X. Li, J. Zhao, Z. Wu, T. Yang, Y. Ma, W. Huang, and K. Yao, Comp. Theor. Chem. 1027, 33 (2014).
15.S. Ghosh, F. Singh, D. Choudhary, D. K. Avasthi, V. Ganesan, P. Shah, and A. Gupta, Surf. Coat. Technol. 142–144, 1034 (2001).
16.J. F. Pierson, Vacuum 66, 59 (2002).
17.G. H. Yue, P. X. Yan, J. Z. Liu, M. X. Wang, M. Li, and X. M. Yuan, J. Appl. Phys. 98, 103506 (2005).
18.T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, and Y. Nakayama, Thin Solid Films 348, 8 (1999).
19.D. Wang, N. Nakamine, and Y. Hayashi, J. Vac. Sci. Technol. A 16, 2084 (1998).
20.K. Matsuzaki, T. Okazaki, Y. Lee, H. Hosono, and T. Susaki, Appl. Phys. Lett. 105, 222102 (2014).
21.K. P. Biju, A. Subrahmanyam, and M. K. Jain, J. Phys. D: Appl. Phys. 41, 155409 (2008).
22.G. Sahoo, S. R. Meher, and M. K. Jain, Mater. Sci. Eng. B 191, 7 (2015).
23.J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).
24.F. Urbach, Phys. Rev. B 92, 1324 (1953).
25.P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
26.N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).
27.B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).
28.K. G. Lisunov, M. Guk, A. Nateprov, S. Levcenko, V. Tezlevan, and E. Arushanov, Sol. Energy Mater. Sol. Cells 112, 127 (2013).
29.A. Bose, S. Basu, S. Banerjee, and D. Chakravorty, J. Appl. Phys. 98, 074307 (2005).
30.V. P. Arya, V. Prasad, and P. S. A. Kumar, J. Phys.: Condens. Matter 24, 245602 (2012).
31.S. R. Meher, R. V. M. Naidu, K. P. Biju, A. Subrahmanyam, and M. K. Jain, Appl. Phys. Lett. 99, 082112 (2011).

Data & Media loading...


Article metrics loading...



We have investigated the temperature dependent carrier transport properties of nano-crystalline copper nitride thin films synthesized by modified activated reactive evaporation. The films, prepared in a Cu-rich growth condition are found to be highly disordered and the carrier transport in these films is mainly attributed to the impurity band conduction. We have observed that no single conduction mechanism is appropriate to elucidate the carrier transport in the entire temperature range of 20 – 300 K. Therefore, we have employed different conduction mechanisms in different temperature regimes. The carrier transport of the films in the low temperature regime (20 – 150 K) has been interpreted by implementing quantum correction to the conductivity. In the high temperature regime (200 – 300 K), the conduction mechanism has been successfully analyzed on the basis of Mott’s variable range hopping mechanism. Furthermore, it can be predicted that copper ions present at the surface of the crystallites are responsible for the hopping conduction mechanism.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd