Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4934935
1.
1.M. A. K. L. Dissanayake and A. R. West, J. Mater. Chem. 1, 1023 (1991).
http://dx.doi.org/10.1039/jm9910101023
2.
2.R. Collongues, A. Kahn, and D. Michel, Annu. Rev. Mater. Sci. 9, 123 (1979).
http://dx.doi.org/10.1146/annurev.ms.09.080179.001011
3.
3.K. Nakagawa and T. Ohashi, J. Electrochem. Soc. 145, 1344 (1998).
http://dx.doi.org/10.1149/1.1838462
4.
4.K. Nakagawa and T. Ohashi, Electrochemistry 67, 618 (1999).
5.
5.M. Olivares-Marin, T. C. Drage, and M. M. Maroto-Valer, Int. J.Greenh. Gas Con. 4, 623 (2010).
http://dx.doi.org/10.1016/j.ijggc.2009.12.015
6.
6.C. E. Johnson, J. Nucl. Mater. 179-181, 42 (1991).
http://dx.doi.org/10.1016/0022-3115(91)90012-V
7.
7.C. E. Johnson, Ceramics Int. 17, 253 (1991).
http://dx.doi.org/10.1016/0272-8842(91)90019-V
8.
8.C. E. Johnson, J. Nucl. Mater. 270, 212 (1999).
http://dx.doi.org/10.1016/S0022-3115(98)00905-2
9.
9.N. Roux, G. Hollenberg, C. Johnson, K. Noda, and R. Verrall, Fusion Eng. Des. 27, 154 (1995).
http://dx.doi.org/10.1016/0920-3796(95)90123-X
10.
10.Y. Ishii, Y. Morii, R. M. Nicklow, and S. Funahashi, Physica B 213–214, 436 (1995).
http://dx.doi.org/10.1016/0921-4526(95)00362-D
11.
11.T. Terai, H. Mohri, and Y. Takahashi, J. Nucl. Mater. 178-181, 808 (1991).
http://dx.doi.org/10.1016/0022-3115(91)90211-O
12.
12.C. Alvani et al., J. Nucl. Mater. 289, 303 (2001).
http://dx.doi.org/10.1016/S0022-3115(01)00424-X
13.
13.T. Kinjyo, M. Nishikawa, M. Enoeda, and S. Fukada, Fusion Eng. Des. 83, 580 (2008).
http://dx.doi.org/10.1016/j.fusengdes.2007.11.011
14.
14.A. La Barbera, B. Riccardi, A. Donato, C. A. Nannetti, and L. F. Moreschi, J. Nucl. Mater. 294, 223 (2001).
http://dx.doi.org/10.1016/S0022-3115(01)00487-1
15.
15.S. Beloglazov, M. Nishikawa, b, M. Glugla, and T. Kinjyo, J. Nucl. Mater. 329–333, 1274 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2004.04.232
16.
16.S. Akahori et al., J. Radioanaly. Nucl. Chem. 255, 257 (2003).
http://dx.doi.org/10.1023/A:1022523930069
17.
17.T. Kinjyo, M. Nishikawa, and M. Enoeda, J. Nucl. Mater. 367–370, 1361 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.03.249
18.
18.Y. W. Rhee, J. H. Yang, and K. S. Kim, Thermochim. Acta 455, 86 (2007).
http://dx.doi.org/10.1016/j.tca.2006.11.032
19.
19.Y. Nishikawa, M. Oyaidzu, and A. Yoshikawa, J. Nucl. Mater. 367–370, 1371 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.03.251
20.
20.M. Nishikawa, T. Kinjyo, and Y. Nishida, J. Nucl. Mater. 325, 87 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2003.11.001
21.
21.T. Kinjyo, M. Nishikawa, N. Yamashita, T. Koyama, T. Tanifuji, and M. Enoeda, Fusion Eng. Des. 82, 2147 (2007).
http://dx.doi.org/10.1016/j.fusengdes.2007.07.002
22.
22.K. Hashimoto, M. Nishikawa, N. Nakashima, S. Beloglazov, and M. Enoeda, Fusion Eng. Des. 61–62, 375 (2002).
http://dx.doi.org/10.1016/S0920-3796(02)00220-X
23.
23.J. E. Tiliks, G. K. Kizane, A. A. Supe, A. A. Abramenkovs, J. J. Tiliks, and V. G. Vasiljev, Fusion Eng. Des. 17, 17 (1991).
http://dx.doi.org/10.1016/0920-3796(91)90029-P
24.
24.A. Abramenkovs, J. Tiliks, and V. Vasiljev, Fusion Eng. Des. 17, 61 (1991).
http://dx.doi.org/10.1016/0920-3796(91)90037-Q
25.
25.A. Abramenkovs, J. Tiliks, and H. Werle, Fusion Technol. 2, 1261 (1992).
26.
26.A. Donato, Fusion Eng. Des. 38, 369 (1998).
http://dx.doi.org/10.1016/S0920-3796(97)00123-3
27.
27.H. Tanigawa and S. Tanaka, J. Nucl. Mater. 307-311, 1446 (2002).
http://dx.doi.org/10.1016/S0022-3115(02)01294-1
28.
28.R. Shah, A. D. Vita, V. Heine, and M. C. Payne, Phys. Rev. B 53, 8257 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.8257
29.
29.H. Tanigawa and S. Tanaka, Fusion Eng. Des. 61-62, 789 (2002).
http://dx.doi.org/10.1016/S0920-3796(02)00263-6
30.
30.L. Padilla-Campos, J. Mol. Struct. (Theochem) 580, 101 (2002).
http://dx.doi.org/10.1016/S0166-1280(01)00600-5
31.
31.L. Padilla-Campos, J. Mol. Struct. (Theochem) 621, 107 (2003).
http://dx.doi.org/10.1016/S0166-1280(02)00538-9
32.
32.S. T. Murphy and N. D. M. Hine, Chem. Mater 26, 1629 (2014).
http://dx.doi.org/10.1021/cm4038473
33.
33.W. Y. Ching, Y. P. Li, B.W. Veal, and D. J. Lam, Phys. Rev. B 32, 1203 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.1203
34.
34.K. Munakata and Y. Yokoyama, J. Nucl. Sci. Technol. 38, 915 (2001).
http://dx.doi.org/10.1080/18811248.2001.9715117
35.
35.T. Tang, P. Chen, W. Luo, D. Luo, and Y. Wang, J. Nucl. Mater. 420, 31 (2012).
http://dx.doi.org/10.1016/j.jnucmat.2011.08.040
36.
36.Y. Duan and K. Parlinski, Phys. Rew. B 84, 104113 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104113
37.
37.T. Nakazawa, K. Yokoyama, and K. Noda, J. Nucl. Mater. 258-263, 571 (1998).
http://dx.doi.org/10.1016/S0022-3115(98)00426-7
38.
38.T. Nakazawa, K. Yokoyama, V. Grismanovs, and Y. Katano, J. Nucl. Mater. 279, 201 (2000).
http://dx.doi.org/10.1016/S0022-3115(00)00022-2
39.
39.T. Nakazawa, K. Yokayama, V. Grismanovs, and Y. Katano, J. Nucl. Mater. 297, 69 (2001).
http://dx.doi.org/10.1016/S0022-3115(01)00584-0
40.
40.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
41.
41.G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
42.
42.P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
43.
43.W. Kohn and L.S. Sham, Phys. Rev. A 140, 1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
44.
44.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
45.
45.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
46.
46.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 16, 1748 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.1748
47.
47.S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2339
48.
48.C. G. Van de Walle and P. E. Blöchl, Phys. Rev. B 47, 4244 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4244
49.
49.C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.016402
50.
50.C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011).
http://dx.doi.org/10.1002/pssb.201046289
51.
51.C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
52.
52.D. Tranqui, R.D. Shannon, H. Y. Chen, S. Lijima, and W. H. Baur, Acta Cryst. B 35, 2479 (1979).
http://dx.doi.org/10.1107/S0567740879009730
53.
53.X. Yu et al., J. Nucl. Mater. 456, 455 (2015).
http://dx.doi.org/10.1016/j.jnucmat.2014.10.030
54.
54.M. A. Butler, J. Appl. Phys. 48, 1914 (1977).
http://dx.doi.org/10.1063/1.323948
55.
55.Y. Nishikawa et al., J. Nucl. Mater. 367–370, 1371 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.03.251
56.
56.M. W. Chase, NIST-JANAF Thermochemical Tables, 4th ed. (American Chemical Society, New York, 1998).
57.
57.J. Osorio-Guillen, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. Lett. 96, 107203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.107203
58.
58.A. Abramenkovs, J. Tiliks, G. Kizane, V. Grishmanovs, and A. Supe, J. Nucl. Mater. 248, 116 (1997).
http://dx.doi.org/10.1016/S0022-3115(97)00206-7
59.
59.A. Janotti and C. G. Van de Walle, Nat. Mater. 6, 44 (2007).
http://dx.doi.org/10.1038/nmat1795
60.
60.Yuh Fukai, Yasuyuki Ishii, Yoshihiro Goto, and Kuniaki Watanabe, J. Alloy. Compd. 313, 121 (2000).
http://dx.doi.org/10.1016/S0925-8388(00)01195-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4934935
Loading
/content/aip/journal/adva/5/10/10.1063/1.4934935
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4934935
2015-10-26
2016-09-30

Abstract

The LiSiO is a promising breeder material for future fusion reactors. Radiation induced vacancies and hydrogen isotope related impurities are the major types of point defects in this breeder material. In present study, various kinds of vacancies and hydrogen isotopes related point defects in LiSiO are investigated through density functional theory (DFT) calculations. The band gap of LiSiO is determined by UV-Vis diffuse reflectance spectroscopy experiments. Formation energies of all possible charge states of Li, Si and O vacancies are calculated using DFT methods. Formation energies of possible charge states of hydrogen isotopes substitution for Li and O are also calculated. We found that Li-vacancies will dominate among all vacancies in neutral charge state under radiation conditions and the O, Li, and Si vacancies (V,V,V) are stable in charge states +2, -1, -4 for most of the range of Fermi level, respectively. The interstitial hydrogen isotopes (H) and substitutional H are stable in the charge states +1, 0 for most of the range of Fermi level, respectively. Moreover, substitutional H are stable in +1 charge states. We also investigated the process of tritium recovery by discussing the interaction between interstitial H and Li-vacancy, O-vacancy, and found that and are the most common H related defects during radiation process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4934935.html;jsessionid=DdQubL6Aum7yHLgfr5DvYm0p.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4934935&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4934935&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4934935'
Right1,Right2,Right3,