Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4934937
1.
1.B.C. Sakiadis, “Boundary-Layer Behaviour on Conti- nuous Solid Surfaces: I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow,” AIChE Journal 7, 2628 (1961).
http://dx.doi.org/10.1002/aic.690070108
2.
2.L.J. Crane, “Flow past a Stretching Plate,” Zeitschrift für Angewandte Mathematik und Physik 21, 645647 (1970).
http://dx.doi.org/10.1007/BF01587695
3.
3.R.R. Rangi and N. Ahmad, “Boundary layer flow past a stretching cylinder and heat transfer with variable thermal conductivity,” Applied Mathematics 3, 205209 (2012).
http://dx.doi.org/10.4236/am.2012.33032
4.
4.M.Y. Malik, A. Hussain, and S. Nadeem, “Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity,” Scientia Iranica B 20, 313321 (2013).
5.
5.R.U. Haq, S. Nadeem, N.S. Akbar, and Z.H. Khan, “Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface,” IEEE Transactions on nanotechnology, DOI 10.1109/TNANO.2014.2363684
http://dx.doi.org/10.1109/TNANO.2014.2363684
6.
6.S. Nadeem, S.T. Hussain, and C. Lee, “Flow of a Williamson fluid over a stretching sheet,” Brazilian journal of chemical engineering 30, 619625 (2013).
http://dx.doi.org/10.1590/S0104-66322013000300019
7.
7.S.T. Hussain, S. Nadeem, and R.U. Haq, “Model-based analysis of micropolar nanofluid flow over a stretching surface,” The european physical journal plus, DOI 10.1140/epjp/i2014-14161-8
http://dx.doi.org/10.1140/epjp/i2014-14161-8
8.
8.M.Y. Malik and T. Salahuddin, “Numerical Solution of MHD Stagnation Point Flow of Williamson Fluid Model over a Stretching Cylinder,” International journal of nonlinear science and numerical simulation 16, 161164 (2015).
http://dx.doi.org/10.1515/ijnsns-2014-0035
9.
9.M.Y. Malik, T. Salahuddin, Arif Hussain, and S. Bilal, “MHD flow of tangent hyperbolic fluid over a stretching cylinder: Using Keller box method,” Journal of magnetism and magnetic materials 395, 271276 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.07.097
10.
10.M.A. Chaudhary and J.H. Merkin, “A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities,” Fluid dynamics research 16, 311333 (1995).
http://dx.doi.org/10.1016/0169-5983(95)00015-6
11.
11.S. Shaw, P.K. Kameswaran, and P. Sibanda, “Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium,” Boundary value problems 2013, 77 (2013).
http://dx.doi.org/10.1186/1687-2770-2013-77
12.
12.P.K. Kameswaran, S. Shaw, P. Sibanda, and P.V.S.N. Murthy, “Homogeneous–heterogeneous reactions in a nanofluid flow due to a porous stretching sheet,” International journal of heat and mass transfer 57, 465472 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.047
13.
13.M.R. Krishnamurthy, B.C. Prasannakumara, B.J. Gireesha, and R. S. R. Gorla, “Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium,” Engineering science and technology, an international journal, http://dx.doi.org/10.1016/j.jestch.2015.06.010.
http://dx.doi.org/10.1016/j.jestch.2015.06.010
14.
14.P.T. Manjunatha1, B. J. Gireesha, and B.C. Prasannakumara, “Thermal analysis of conducting dusty fluid flow in a porous medium over a stretching cylinder in the presence of non-uniform source/sink,” International journal of mechanical and materials engineering (2014) 1:13.
15.
15.T. Hayat, M. Farooq, and A. Alsaedi, “Homogeneous-heterogeneous reactions in the stagnation point flow of carbon nanotubes with Newtonian heating,” AIP advances 5, 027130 (2015).
http://dx.doi.org/10.1063/1.4908602
16.
16.T. Hayat, M. Imtiaza, and A. Alsaedi, “Impact of magnetohydrodynamics in bidirectional flow of nanofluid subject to second order slip velocity and homogeneous–heterogeneous reactions,” Journal of magnetism and magnetic materials 395, 294302 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.07.092
17.
17.S. Nadeem, S.T. Hussain, and C. Lee, “Flow of a Williamson fluid over a stretching sheet,” Brazilian journal of chemical engineering 30, 619625 (2013).
http://dx.doi.org/10.1590/S0104-66322013000300019
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4934937
Loading
/content/aip/journal/adva/5/10/10.1063/1.4934937
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4934937
2015-10-26
2016-09-27

Abstract

This paper addresses the effect of homogeneous-heterogeneous reaction on Williamson fluid model over a stretching cylinder. The boundary layer partial differential equations are converted into ordinary differential equation by using suitable transformations. The non-linear ordinary differential equations are solved by using implicit finite difference Keller box technique. The effects of several pertinent parameters on velocity, temperature and concentration profiles are deliberated graphically. The behavior of skin friction coefficient and Nusselt number are examined through graphs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4934937.html;jsessionid=f2dtYL519zHY1zEx_c3_nTZQ.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4934937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4934937&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4934937'
Right1,Right2,Right3,