Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4935042
1.
1.C. Pang, G.-Y. Lee, T. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, Nat. Mater. 11, 795 (2012).
http://dx.doi.org/10.1038/nmat3380
2.
2.J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).
http://dx.doi.org/10.1126/science.1182383
3.
3.K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, Nat. Mater. 9, 821 (2010).
http://dx.doi.org/10.1038/nmat2835
4.
4.F. A. Chowdhury, T. Morisaki, J. Otsuki, and M. S. Alam, Appl. Surf. Sci. 259, 460 (2012).
http://dx.doi.org/10.1016/j.apsusc.2012.07.067
5.
5.T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, Science 321, 1468 (2008).
http://dx.doi.org/10.1126/science.1160309
6.
6.L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R Dauskardt, and Z. Bao, Nature Communications 2014, DOI: 10.1038/ncomms4002.
http://dx.doi.org/10.1038/ncomms4002
7.
7.D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, and J. A. Rogers, Science 320, 507 (2008).
http://dx.doi.org/10.1126/science.1154367
8.
8.H. Peng, M. Jain, Q. Li, D. E. Peterson, Y. Zhu, and Q. Jia, Am. Chem. Soc. 130, 1130 (2008).
http://dx.doi.org/10.1021/ja077767c
9.
9.C. Metzger, E. Fleisch, J. Meyer, M. Dansachmüller, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, and S. Bauer, Appl. Phys. Letts. 92, 013506 (2008).
http://dx.doi.org/10.1063/1.2830815
10.
10.B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, Science 329, 830 (2010).
http://dx.doi.org/10.1126/science.1192033
11.
11.F. A. Chowdhury, T. Mochida, J. Otsuki, and M. S. Alam, Chem. Phys. Letts. 593, 198 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.01.012
12.
12.D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Nat. Nanotech. 6, 788 (2011).
http://dx.doi.org/10.1038/nnano.2011.184
13.
13.S. C. B. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, and Z. Bao, Nat. Mater. 9, 859 (2010).
http://dx.doi.org/10.1038/nmat2834
14.
14.T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, Nat. Nanotech. 6, 296 (2011).
http://dx.doi.org/10.1038/nnano.2011.36
15.
15.M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, Nat. Mater. 6, 379 (2007).
http://dx.doi.org/10.1038/nmat1891
16.
16.R. J. Prance, S. T. Beardsmore-Rust, P. Watson, C. J. Harland, and H. Prance, Appl. Phys. Letts. 93, 033906 (2008).
http://dx.doi.org/10.1063/1.2964185
17.
17.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
18.
18.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
19.
19.M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).
20.
20.P. V. Kamat, J. Phys. Chem. Lett. 1, 520 (2010).
http://dx.doi.org/10.1021/jz900265j
21.
21.J. Park, Y. H. Ahn, and C. Ruiz-Vargas, Nano Letts. 9, 1742 (2009).
http://dx.doi.org/10.1021/nl8029493
22.
22.X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotech. 3, 538 (2008).
http://dx.doi.org/10.1038/nnano.2008.210
23.
23.D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, and R. S. Ruoff, Nature 448, 457 (2007).
http://dx.doi.org/10.1038/nature06016
24.
24.H. Peng, M. Jain, Q. Li, D. E. Peterson, Y. Zhu, and Q. Jia, J. Am. Chem. Soc. 130, 1130 (2008).
http://dx.doi.org/10.1021/ja077767c
25.
25.B. K. Sarker, M. Arif, P. Stokes, and S. I. Khondaker, J. Appl. Phys. 106, 074307 (2009).
http://dx.doi.org/10.1063/1.3243335
26.
26.P. Avouris, Z. H. Chen, and V. C. Perebeinos, Nat. Nanotechnol. 2, 605 (2007).
http://dx.doi.org/10.1038/nnano.2007.300
27.
27.R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).
http://dx.doi.org/10.1126/science.1060928
28.
28.G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R. Aharonov, and R. M. Devenish, Nature 383, 321 (1996).
http://dx.doi.org/10.1038/383321a0
29.
29.H. Sjöström, S. Stafström, M. Boman, and J.-E. Sundgren, Phys. Rev. Lett. 75, 1336 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1336
30.
30.N. Hellgren, T. Berlin, G. K. Gueorguiev, M. P. Johansson, S. Stafström, and L. Hultman, Mat. Sci. Eng. B 113, 242 (2004).
http://dx.doi.org/10.1016/S0921-5107(04)00430-1
31.
31.Y. Shen, P. Zhou, Q. Q. Sun, L. Wan, and J. Li, Appl. Phys. Lett. 99, 141911 (2011).
http://dx.doi.org/10.1063/1.3646908
32.
32.P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, and N. D. Robinson, ACS Nano 4, 637 (2010).
http://dx.doi.org/10.1021/nn9018569
33.
33.K. S. Subrahmanyam, P. Kumar, A. Nag, and C. N. R. Rao, Solid State Commun. 150, 1774 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.07.017
34.
34.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Nat. Acad. Sci. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
35.
35.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
36.
36.Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
37.
37.J. Yang, Y. Zhou, L. Sun, N. Zhao, C. Zang, and X. Cheng, Appl. Surf. Sci. 258, 5056 (2012).
http://dx.doi.org/10.1016/j.apsusc.2012.01.105
38.
38.H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).
http://dx.doi.org/10.1021/nn700375n
39.
39.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
http://dx.doi.org/10.1038/nature04969
40.
40.I. V. Lightcap, T. H. Kosel, and P. V. Kamat, Nano Lett. 10, 577 (2010).
http://dx.doi.org/10.1021/nl9035109
41.
41.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
42.
42.F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
43.
43.Y.-F. Li, Y.-Z. Liu, W.- Z. Shen, Y.-G. Yang, M.-Z. Wang, and Y.-F. Wen, Appl Phys A 106, 779 (2012).
http://dx.doi.org/10.1007/s00339-012-6774-0
44.
44.D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).
http://dx.doi.org/10.1021/nn1006368
45.
45.M. A. Hossain, S. Islam, F. A. Chowdhury, K. Uchida, T. Tamura, K. Sugawa, T. Mochida, J. Otsuki, T. G. Mohiuddin, and M. S. Alam, “Structural, mechanical, and electrical properties of carbon nanoparticles synthesised from diesel, fullerenes,” Nanotubes and Carbon Nanostructures (2015), DOI: 10.1080/1536383X.2015.1092436.
http://dx.doi.org/10.1080/1536383X.2015.1092436
46.
46.D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).
http://dx.doi.org/10.1039/B917103G
47.
47.I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett. 8, 4283 (2008).
http://dx.doi.org/10.1021/nl8019938
48.
48.R. J. Prance, S. T. Beardsmore-Rust, P. Watson, C. J. Harland, and H. Prance, Appl. Phys. Lett. 93, 33906 (2008).
http://dx.doi.org/10.1063/1.2964185
49.
49.Q. Zeng, S. Wang, L. Yang, Z. Wang, T. Pei, Z. Zhang, L.-M. Peng, W. Zhou, J. Liu, W. Zhou, and S. Xie, Optical Materials Express 2, 839 (2012).
http://dx.doi.org/10.1364/OME.2.000839
50.
50.H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. T. Redfern, and G. Yang, Optics Express 22, 19375 (2014).
http://dx.doi.org/10.1364/OE.22.019375
51.
51.J. C. Joshin and A. L. Dawar, “Pyroelectric Materials,” Phys. Stat. Sol. 70, 353 (1982).
http://dx.doi.org/10.1002/pssa.2210700202
52.
52.M. Shankar, J. B. Burchett, Q. Hao, B. D. Guenther, and D. J. Brady, Opt. Eng. 45, 106401 (2006).
http://dx.doi.org/10.1117/1.2360948
53.
53.J. Song, X. Wang, and C.-T. Chang, Journal of NanomaterialsVol. 2014, Article ID 276143 http://dx.doi.org/10.1155/2014/276143.
54.
54.H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, and A. H. Windle, J. Phys. Chem. B 103, 8116 (1999).
http://dx.doi.org/10.1021/jp991659y
55.
55.D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, Jr., C. A. Ventrice, and R. S. Ruoff, Carbon 47, 145 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.09.045
56.
56.B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, Adv. Mater. 23, 5419 (2011).
http://dx.doi.org/10.1002/adma.201101414
57.
57.S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, Appl. Phys. Lett. 96, 163109 (2010).
http://dx.doi.org/10.1063/1.3415499
58.
58.H. Morkoç, A. D. Carlo, and R. Cingolani, Solid-State Electronics 46, 157 (2002).
http://dx.doi.org/10.1016/S0038-1101(01)00271-4
59.
59.J. P. Cheng, Y. J. Zhang, and R. Y. Guo, Growth 310, 57 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.08.034
60.
60.T. Ueda, Z. H. An, K. Hirakawa, and S. Komiyama, J. Appl. Phys. 103, 093109 (2008).
http://dx.doi.org/10.1063/1.2919779
61.
61.X. P. Chen, H. L. Zhu, J. F. Cai, and Z. Y. Wu, J. Appl. Phys. 102, 024505 (2007).
http://dx.doi.org/10.1063/1.2747213
62.
62.I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).
http://dx.doi.org/10.1063/1.2432410
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4935042
Loading
/content/aip/journal/adva/5/10/10.1063/1.4935042
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4935042
2015-10-28
2016-12-09

Abstract

This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4935042.html;jsessionid=auYexBTLmGYt3HCuh5Km9kvj.x-aip-live-02?itemId=/content/aip/journal/adva/5/10/10.1063/1.4935042&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4935042&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935042'
Right1,Right2,Right3,