Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. Pang, G.-Y. Lee, T. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, Nat. Mater. 11, 795 (2012).
2.J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).
3.K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, Nat. Mater. 9, 821 (2010).
4.F. A. Chowdhury, T. Morisaki, J. Otsuki, and M. S. Alam, Appl. Surf. Sci. 259, 460 (2012).
5.T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, Science 321, 1468 (2008).
6.L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R Dauskardt, and Z. Bao, Nature Communications 2014, DOI: 10.1038/ncomms4002.
7.D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, and J. A. Rogers, Science 320, 507 (2008).
8.H. Peng, M. Jain, Q. Li, D. E. Peterson, Y. Zhu, and Q. Jia, Am. Chem. Soc. 130, 1130 (2008).
9.C. Metzger, E. Fleisch, J. Meyer, M. Dansachmüller, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, and S. Bauer, Appl. Phys. Letts. 92, 013506 (2008).
10.B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, and C. M. Lieber, Science 329, 830 (2010).
11.F. A. Chowdhury, T. Mochida, J. Otsuki, and M. S. Alam, Chem. Phys. Letts. 593, 198 (2014).
12.D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Nat. Nanotech. 6, 788 (2011).
13.S. C. B. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, and Z. Bao, Nat. Mater. 9, 859 (2010).
14.T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, Nat. Nanotech. 6, 296 (2011).
15.M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, Nat. Mater. 6, 379 (2007).
16.R. J. Prance, S. T. Beardsmore-Rust, P. Watson, C. J. Harland, and H. Prance, Appl. Phys. Letts. 93, 033906 (2008).
17.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, Science 306, 666 (2004).
18.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
19.M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).
20.P. V. Kamat, J. Phys. Chem. Lett. 1, 520 (2010).
21.J. Park, Y. H. Ahn, and C. Ruiz-Vargas, Nano Letts. 9, 1742 (2009).
22.X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotech. 3, 538 (2008).
23.D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, and R. S. Ruoff, Nature 448, 457 (2007).
24.H. Peng, M. Jain, Q. Li, D. E. Peterson, Y. Zhu, and Q. Jia, J. Am. Chem. Soc. 130, 1130 (2008).
25.B. K. Sarker, M. Arif, P. Stokes, and S. I. Khondaker, J. Appl. Phys. 106, 074307 (2009).
26.P. Avouris, Z. H. Chen, and V. C. Perebeinos, Nat. Nanotechnol. 2, 605 (2007).
27.R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).
28.G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R. Aharonov, and R. M. Devenish, Nature 383, 321 (1996).
29.H. Sjöström, S. Stafström, M. Boman, and J.-E. Sundgren, Phys. Rev. Lett. 75, 1336 (1995).
30.N. Hellgren, T. Berlin, G. K. Gueorguiev, M. P. Johansson, S. Stafström, and L. Hultman, Mat. Sci. Eng. B 113, 242 (2004).
31.Y. Shen, P. Zhou, Q. Q. Sun, L. Wan, and J. Li, Appl. Phys. Lett. 99, 141911 (2011).
32.P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, and N. D. Robinson, ACS Nano 4, 637 (2010).
33.K. S. Subrahmanyam, P. Kumar, A. Nag, and C. N. R. Rao, Solid State Commun. 150, 1774 (2010).
34.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Nat. Acad. Sci. 102, 10451 (2005).
35.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
36.Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
37.J. Yang, Y. Zhou, L. Sun, N. Zhao, C. Zang, and X. Cheng, Appl. Surf. Sci. 258, 5056 (2012).
38.H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).
39.S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
40.I. V. Lightcap, T. H. Kosel, and P. V. Kamat, Nano Lett. 10, 577 (2010).
41.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
42.F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
43.Y.-F. Li, Y.-Z. Liu, W.- Z. Shen, Y.-G. Yang, M.-Z. Wang, and Y.-F. Wen, Appl Phys A 106, 779 (2012).
44.D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).
45.M. A. Hossain, S. Islam, F. A. Chowdhury, K. Uchida, T. Tamura, K. Sugawa, T. Mochida, J. Otsuki, T. G. Mohiuddin, and M. S. Alam, “Structural, mechanical, and electrical properties of carbon nanoparticles synthesised from diesel, fullerenes,” Nanotubes and Carbon Nanostructures (2015), DOI: 10.1080/1536383X.2015.1092436.
46.D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).
47.I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett. 8, 4283 (2008).
48.R. J. Prance, S. T. Beardsmore-Rust, P. Watson, C. J. Harland, and H. Prance, Appl. Phys. Lett. 93, 33906 (2008).
49.Q. Zeng, S. Wang, L. Yang, Z. Wang, T. Pei, Z. Zhang, L.-M. Peng, W. Zhou, J. Liu, W. Zhou, and S. Xie, Optical Materials Express 2, 839 (2012).
50.H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. T. Redfern, and G. Yang, Optics Express 22, 19375 (2014).
51.J. C. Joshin and A. L. Dawar, “Pyroelectric Materials,” Phys. Stat. Sol. 70, 353 (1982).
52.M. Shankar, J. B. Burchett, Q. Hao, B. D. Guenther, and D. J. Brady, Opt. Eng. 45, 106401 (2006).
53.J. Song, X. Wang, and C.-T. Chang, Journal of NanomaterialsVol. 2014, Article ID 276143
54.H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, and A. H. Windle, J. Phys. Chem. B 103, 8116 (1999).
55.D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, Jr., C. A. Ventrice, and R. S. Ruoff, Carbon 47, 145 (2009).
56.B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, Adv. Mater. 23, 5419 (2011).
57.S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, Appl. Phys. Lett. 96, 163109 (2010).
58.H. Morkoç, A. D. Carlo, and R. Cingolani, Solid-State Electronics 46, 157 (2002).
59.J. P. Cheng, Y. J. Zhang, and R. Y. Guo, Growth 310, 57 (2008).
60.T. Ueda, Z. H. An, K. Hirakawa, and S. Komiyama, J. Appl. Phys. 103, 093109 (2008).
61.X. P. Chen, H. L. Zhu, J. F. Cai, and Z. Y. Wu, J. Appl. Phys. 102, 024505 (2007).
62.I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).

Data & Media loading...


Article metrics loading...



This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd