Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. F. Federici et al., “THz imaging and sensing for security and applications,” Semicond. Sci. Technol. 20, S266 (2005).
2.H. Zhong, A. Redo-Sanchez, and X. C. Zhang, “Standoff sensing and imaging of explosive related chemical and bio-chemical materials using THz-TDS,” Int. J. Hi. Spe. Ele. Syst. 17, 239-249 (2007).
3.P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photon. Rev. 5, 124166 (2011).
4.M. R. Scarfi et al., “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol .Phys. 29, 171176 (2003).
5.R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179185 (2003).
6.B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett. 33, 440-442 (2008).
7.W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy,” Opt. Express. 16, 7382-7396 (2008).
8.J. F. O’Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Milli. Terahz. Waves. 33, 245291 (2012).
9.T. J. Yen et al., “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
10.H. T. Chen et al., “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
11.M. Choi et al., “A terahertz metamaterial with unnaturally high refractive Index,” Nature 470, 369-373 (2011).
12.H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5, 513-533 (2011).
13.N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139-150 (2014) and references therein.
14.Y. Yao et al., “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 65266532 (2014).
15.C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, 98120 (2012), and references therein.
16.Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
17.H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
18.Y. Ma et al., “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945947 (2011).
19.X. Shen et al., “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
20.M. Pu et al., “Engineering heavily doped silicon for broadband absorber in the terahertz regime,” Opt. Express. 20, 25513-25519 (2012).
21.J. Zhu et al., “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
22.S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
23.G. Isić et al., “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl 3, 064007 (2015).
24.Y. Wen, W. Ma, J. Bailey, G. Matmon, and X. Yu, “Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption,” IEEE T. THz. Sci. Techn. 5, 406 (2015).
25.Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015) and references therein.
26.Y. Shan et al., “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63-70 (2015).
27.Z. Wang et al., “A circuit method to integrate metamaterial and graphene in absorber design,” Opt. Commun. 329, 76-80 (2014).
28.X. F. Zang et al., “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
29.Y. Peng et al., “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23, 2032 (2015).
30.C. Shi et al., “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105, 031104 (2014).
31.M. P. Hokmabadi et al., “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1, 044003 (2014).
32.Z. C. Xu et al., “A broadband planar THz metamaterial absorber,” Mod. Phys. Lett. B. 29, 1550056 (2015).
33.J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), Sect. 7.5.
34.C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Am. 44, 188-188 (1954).
35.R. C. Hansen and W. T. Pawlewicz, “Effective conductivity and microwave reflectivity of thin metallic films,” IEEE T. Microw. Theory. 30, 2064-2066 (1982).
36.H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, “Microwave absorption on a thin film,” Appl. Phys. Lett. 82, 1353-1355 (2003).
37.G. Nimtz and U Panten, “Broad band electromagnetic wave absorbers designed with nano-metal films,” Ann. Phys. 19, 53-59 (2010).
38.S. Li et al., “Microwave absorptions of ultrathin conductive films and designs of frequency-independent ultrathin absorbers,” AIP Adv. 4, 017130 (2014).
39.A. Thoman et al., “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B. 77, 998-1002 (2008).
40.J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express. 15, 6552-6560 (2007).
41.M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge Press, Cambridge, 1999), p. 752, Section 14.4.
42.See supplementary material at in figure S1 shows the absorption in TE mode and in figure S2 shows the transmittance from 0° to 30°.[Supplementary Material]
43.A. Alu et al., “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
44.K. Q. Le et al., “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112, 094317 (2012).
45.R. H. Fan et al., “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 19801986 (2012).
46.J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B. 21, 1379-1386 (2004).
47.K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors—A status review,” Thin Solid Films. 102, 146 (1983).
48.J. K. Kim, S. Chhajed, and M. F. Schubert, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20, 801-804 (2008).
49.T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films. 516, 5822-5828 (2008).
50.N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sensor. Actuat. B-Chem. 96, 180-189 (2003).
51.J. Zhou, “Indium tin oxide (ITO) deposition, pattering and schottky contact fabrication,” Master thesis, Rochester Inst. of Technol. NY (2005).
52.C. C. Fan, F. J. Bachner, and G. H. Foley, “Effect of oxygen partial pressure during deposition on properties of RF sputtered Sn-doped In2O3 films,” Appl. Phys. Lett. 111, 773-775 (1977).
53.X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010).
54.Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).
55.M. Nagai and K. Tanaka, “THz nonlinearity of water observed with intense THz pulses,” in Conference on Lasers and Electro-Optics 2010, San Jose, California, US, 16–21 May 2010.
56.J. D. Krauss and D. A. Fleisch, Electromagnetics with Applications, 5th ed. (McGraw-Hill, New York, 1999), Sect. 4-7.
57.S. Li et al., “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B. 91 (2015).

Data & Media loading...


Article metrics loading...



According to the theory, an ultrathin conductive film can achromatically dissipate electromagnetic waves with frequency ranging from radio to terahertz. A moderate absorption effect, which gives rise to a maximal absorbance of 50%, can be found if an impedance matching condition is satisfied. We have experimentally demonstrated the frequency-irrelevant, maximal absorption by employing a conductive nanofilm and launching terahertz waves at Brewster angle when the sheet (square) resistance of the film meets the impedance matching condition. In the entire terahertz spectral range covered by our experiments, the frequency-independent optical properties were consistent with the theoretical calculations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd