Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/10/10.1063/1.4935048
1.
1.J. F. Federici et al., “THz imaging and sensing for security and applications,” Semicond. Sci. Technol. 20, S266 (2005).
http://dx.doi.org/10.1088/0268-1242/20/7/018
2.
2.H. Zhong, A. Redo-Sanchez, and X. C. Zhang, “Standoff sensing and imaging of explosive related chemical and bio-chemical materials using THz-TDS,” Int. J. Hi. Spe. Ele. Syst. 17, 239-249 (2007).
http://dx.doi.org/10.1142/S0129156407004461
3.
3.P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photon. Rev. 5, 124166 (2011).
http://dx.doi.org/10.1002/lpor.201000011
4.
4.M. R. Scarfi et al., “THz exposure of whole blood for the study of biological effects on human lymphocytes,” J. Biol .Phys. 29, 171176 (2003).
http://dx.doi.org/10.1023/A:1024440708943
5.
5.R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179185 (2003).
http://dx.doi.org/10.1023/A:1024492725782
6.
6.B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett. 33, 440-442 (2008).
http://dx.doi.org/10.1364/OL.33.000440
7.
7.W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy,” Opt. Express. 16, 7382-7396 (2008).
http://dx.doi.org/10.1364/OE.16.007382
8.
8.J. F. O’Hara, W. Withayachumnankul, and I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Milli. Terahz. Waves. 33, 245291 (2012).
http://dx.doi.org/10.1007/s10762-012-9878-x
9.
9.T. J. Yen et al., “Terahertz magnetic response from artificial materials,” Science 303, 1494-1496 (2004).
http://dx.doi.org/10.1126/science.1094025
10.
10.H. T. Chen et al., “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006).
http://dx.doi.org/10.1038/nature05343
11.
11.M. Choi et al., “A terahertz metamaterial with unnaturally high refractive Index,” Nature 470, 369-373 (2011).
http://dx.doi.org/10.1038/nature09776
12.
12.H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev. 5, 513-533 (2011).
http://dx.doi.org/10.1002/lpor.201000043
13.
13.N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139-150 (2014) and references therein.
http://dx.doi.org/10.1038/nmat3839
14.
14.Y. Yao et al., “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 65266532 (2014).
http://dx.doi.org/10.1021/nl503104n
15.
15.C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, 98120 (2012), and references therein.
16.
16.Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
http://dx.doi.org/10.1063/1.3276072
17.
17.H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.073901
18.
18.Y. Ma et al., “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945947 (2011).
http://dx.doi.org/10.1364/OL.36.000945
19.
19.X. Shen et al., “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
http://dx.doi.org/10.1063/1.4757879
20.
20.M. Pu et al., “Engineering heavily doped silicon for broadband absorber in the terahertz regime,” Opt. Express. 20, 25513-25519 (2012).
http://dx.doi.org/10.1364/OE.20.025513
21.
21.J. Zhu et al., “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
http://dx.doi.org/10.1063/1.4890521
22.
22.S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
http://dx.doi.org/10.1063/1.4918289
23.
23.G. Isić et al., “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl 3, 064007 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.3.064007
24.
24.Y. Wen, W. Ma, J. Bailey, G. Matmon, and X. Yu, “Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption,” IEEE T. THz. Sci. Techn. 5, 406 (2015).
http://dx.doi.org/10.1109/TTHZ.2015.2401392
25.
25.Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3, 037001 (2015) and references therein.
http://dx.doi.org/10.1103/PhysRevApplied.3.037001
26.
26.Y. Shan et al., “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63-70 (2015).
http://dx.doi.org/10.1016/j.optcom.2015.03.072
27.
27.Z. Wang et al., “A circuit method to integrate metamaterial and graphene in absorber design,” Opt. Commun. 329, 76-80 (2014).
http://dx.doi.org/10.1016/j.optcom.2014.05.010
28.
28.X. F. Zang et al., “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
http://dx.doi.org/10.1038/srep08901
29.
29.Y. Peng et al., “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23, 2032 (2015).
http://dx.doi.org/10.1364/OE.23.002032
30.
30.C. Shi et al., “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105, 031104 (2014).
http://dx.doi.org/10.1063/1.4890617
31.
31.M. P. Hokmabadi et al., “Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber,” Phys. Rev. Appl. 1, 044003 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.1.044003
32.
32.Z. C. Xu et al., “A broadband planar THz metamaterial absorber,” Mod. Phys. Lett. B. 29, 1550056 (2015).
http://dx.doi.org/10.1142/S0217984915500566
33.
33.J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), Sect. 7.5.
34.
34.C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Am. 44, 188-188 (1954).
http://dx.doi.org/10.1364/JOSA.44.000188
35.
35.R. C. Hansen and W. T. Pawlewicz, “Effective conductivity and microwave reflectivity of thin metallic films,” IEEE T. Microw. Theory. 30, 2064-2066 (1982).
http://dx.doi.org/10.1109/TMTT.1982.1131380
36.
36.H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, “Microwave absorption on a thin film,” Appl. Phys. Lett. 82, 1353-1355 (2003).
http://dx.doi.org/10.1063/1.1556969
37.
37.G. Nimtz and U Panten, “Broad band electromagnetic wave absorbers designed with nano-metal films,” Ann. Phys. 19, 53-59 (2010).
http://dx.doi.org/10.1002/andp.200910389
38.
38.S. Li et al., “Microwave absorptions of ultrathin conductive films and designs of frequency-independent ultrathin absorbers,” AIP Adv. 4, 017130 (2014).
http://dx.doi.org/10.1063/1.4863921
39.
39.A. Thoman et al., “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B. 77, 998-1002 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195405
40.
40.J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express. 15, 6552-6560 (2007).
http://dx.doi.org/10.1364/OE.15.006552
41.
41.M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge Press, Cambridge, 1999), p. 752, Section 14.4.
42.
42.See supplementary material at http://dx.doi.org/10.1063/1.4935048 in figure S1 shows the absorption in TE mode and in figure S2 shows the transmittance from 0° to 30°.[Supplementary Material]
43.
43.A. Alu et al., “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.123902
44.
44.K. Q. Le et al., “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112, 094317 (2012).
http://dx.doi.org/10.1063/1.4764334
45.
45.R. H. Fan et al., “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 19801986 (2012).
http://dx.doi.org/10.1002/adma.201104483
46.
46.J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B. 21, 1379-1386 (2004).
http://dx.doi.org/10.1364/JOSAB.21.001379
47.
47.K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors—A status review,” Thin Solid Films. 102, 146 (1983).
http://dx.doi.org/10.1016/0040-6090(83)90256-0
48.
48.J. K. Kim, S. Chhajed, and M. F. Schubert, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20, 801-804 (2008).
http://dx.doi.org/10.1002/adma.200701015
49.
49.T. Minami, “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes,” Thin Solid Films. 516, 5822-5828 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.10.063
50.
50.N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sensor. Actuat. B-Chem. 96, 180-189 (2003).
http://dx.doi.org/10.1016/S0925-4005(03)00524-0
51.
51.J. Zhou, “Indium tin oxide (ITO) deposition, pattering and schottky contact fabrication,” Master thesis, Rochester Inst. of Technol. NY (2005).
52.
52.C. C. Fan, F. J. Bachner, and G. H. Foley, “Effect of oxygen partial pressure during deposition on properties of RF sputtered Sn-doped In2O3 films,” Appl. Phys. Lett. 111, 773-775 (1977).
http://dx.doi.org/10.1063/1.89544
53.
53.X. C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010).
54.
54.Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).
55.
55.M. Nagai and K. Tanaka, “THz nonlinearity of water observed with intense THz pulses,” in Conference on Lasers and Electro-Optics 2010, San Jose, California, US, 16–21 May 2010.
56.
56.J. D. Krauss and D. A. Fleisch, Electromagnetics with Applications, 5th ed. (McGraw-Hill, New York, 1999), Sect. 4-7.
57.
57.S. Li et al., “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B. 91 (2015).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/10/10.1063/1.4935048
Loading
/content/aip/journal/adva/5/10/10.1063/1.4935048
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/10/10.1063/1.4935048
2015-10-28
2016-09-28

Abstract

According to the theory, an ultrathin conductive film can achromatically dissipate electromagnetic waves with frequency ranging from radio to terahertz. A moderate absorption effect, which gives rise to a maximal absorbance of 50%, can be found if an impedance matching condition is satisfied. We have experimentally demonstrated the frequency-irrelevant, maximal absorption by employing a conductive nanofilm and launching terahertz waves at Brewster angle when the sheet (square) resistance of the film meets the impedance matching condition. In the entire terahertz spectral range covered by our experiments, the frequency-independent optical properties were consistent with the theoretical calculations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/10/1.4935048.html;jsessionid=xn8XTMawHRQ5zDnapOQmmdHK.x-aip-live-03?itemId=/content/aip/journal/adva/5/10/10.1063/1.4935048&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/10/10.1063/1.4935048&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935048'
Right1,Right2,Right3,